浏览全部资源
扫码关注微信
1.中国科学院半导体研究所 集成光电子学国家重点实验室, 北京 100083
2.中国科学院大学 材料科学与光电技术学院, 北京 100049
3.中国科学院大学 材料科学与光电工程中心, 北京 100049
[ "曹子坤(1993-), 男, 湖北荆州人, 博士研究生, 2016年于北京科技大学获得学士学位, 主要从事氮化镓材料光电器件的研究。E-mail:zikuncao@semi.ac.cn" ]
[ "赵德刚(1972-), 男, 湖北钟祥人, 博士, 教授, 博士研究生导师, 2000年于中国科学院半导体研究所获得博士学位, 主要从事宽禁带半导体材料与光电子器件的研究。E-mail:dgzhao@red.semi.ac.cn" ]
Published:2020-06,
Received:18 March 2020,
Accepted:2020-4-15
移动端阅览
ZI-KUN CAO, ZONG-SHUN LIU, DE-SHENG JIANG, et al. Fabrication of High Gain GaN Based PIN Avalanche Diode and Estimation of p-GaN Layer Carrier Concentration. [J]. Chinese journal of luminescence, 2020, 41(6): 707-713.
ZI-KUN CAO, ZONG-SHUN LIU, DE-SHENG JIANG, et al. Fabrication of High Gain GaN Based PIN Avalanche Diode and Estimation of p-GaN Layer Carrier Concentration. [J]. Chinese journal of luminescence, 2020, 41(6): 707-713. DOI: 10.3788/fgxb20204106.0707.
介绍了GaN基pin雪崩探测器的制作过程和测试结果。制作的器件在71 V反向偏压下发生雪崩,倍增因子达到5×10
4
。我们发现,p层载流子浓度是影响器件性能的重要参数。结合电场强度分布的分析,本文提出了一种估算p层载流子浓度的方法,进一步计算得到刚好雪崩击穿时的最大电场值为2.6 MV/cm,与以往GaN雪崩器件所报道的研究结果相似。最后,霍尔测试和SIMS测量p层载流子浓度的结果与模型计算的估算值吻合。
The fabrication process and test results of the GaN based pin avalanche detector are described in detail. The avalanche in obtained device occurs at a reverse bias of 71 V
and the multiplication factor reaches 5×10
4
. It is found that the p-layer carrier concentration is an important parameter affecting the device performance. Combined with the analysis of electric field intensity distribution
a method to estimate the carrier concentration in p-layer is proposed
and further calculation indicates that the maximum electric field value at avalanche breakdown is 2.6 MV/cm
which is similar to the previously reported values for GaN avalanche detectors. At last
Hall test and Secondary ion mass spectroscopy(SIMS) results are consistent with those estimated by the model calculation.
氮化镓雪崩探测器泊松方程
GaNavalanche detectorPoisson equation
PANDA D K, LENKA T R. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications[J].J. Semicond., 2017, 38(6):064002-1-6.
KOZODOY P, XING H L, DENBAARS S P, et al.. Heavy doping effects in Mg-doped GaN[J].J. Appl. Phys., 2000, 87(4):1832-1835.
RAZEGHI M, ROGALSKI A. Semiconductor ultraviolet detectors[J].J. Appl. Phys., 1996, 79(10):7433-7473.
ZHAO D M, ZHAO D G. Analysis of the growth of GaN epitaxy on silicon[J].J. Semicond., 2018, 39(3):033006.
LI X L, MA P, JI X L, et al.. Implementation of slow and smooth etching of GaN by inductively coupled plasma[J].J. Semicond., 2018, 39(11):113002-1-6.
CAO X A, LU H, LEBOEUF S F, et al.. Growth and characterization of GaN pin rectifiers on free-standing GaN[J].Appl. Phys. Lett., 2005, 87(5):053503-1-3.
CHENG Z J, SAN H S, FENG Z H, et al.. High open-circuit voltage betavoltaic cell based on GaN pin homojunction[J].Electron. Lett., 2011, 47(12):720-722.
WANG X D, HU W D, CHEN X S, et al.. Dependence of dark current and photoresponse characteristics on polarization charge density for GaN-based avalanche photodiodes[J].J. Phys. D:Appl. Phys., 2011, 44(40):405102-1-11.
LI T, BECK A L, COLLINS C, et al.. Improved ultraviolet quantum efficiency using a semitransparent recessed window AlGaN/GaN heterojunction p-i-n photodiode[J].Appl. Phys. Lett., 1999, 75(16):2421-2423.
ZHANG S, ZHAO D G, JIANG D S, et al.. Investigation of responsivity decreasing with rising bias voltage in a GaN Schottky barrier photodetector[J].Semicond. Sci. Technol., 2008, 23(10):105015-1-6.
WANG X D, HU W D, PAN M,et al.. Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes[J].J. Appl. Phys., 2014, 115(1):013103-1-8.
ZHANG Y, YOO D, LIMB J B, et al.. GaN ultraviolet avalanche photodiodes fabricated on free-standing bulk GaN substrates[J].Phys. Status Solidi C, 2008, 5(6):2290-2292.
MCCLINTOCK R, YASAN A, MINDER K, et al.. Avalanche multiplication in AlGaN based solar-blind photodetectors[J].Appl. Phys. Lett., 2005, 87(24):241123-1-3.
MORESCO M, BERTAZZI F, BELLOTTI E. Theory of high field carrier transport and impact ionization in wurtzite GaN. Part Ⅱ: application to avalanche photodetectors[J].J. Appl. Phys., 2009, 106(6): 063719-1-9.
XIE F, LU H, CHEN D J, et al.. Metal-semiconductor-metal ultraviolet avalanche photodiodes fabricated on bulk GaN substrate[J].IEEE Electron Device Lett., 2011, 32(9):1260-1262.
WANG F X. Theoretical study of back-illuminated separated absorption and multiplication AlGaN APDs with different structural parameters[J].Opt. Quantum Electron., 2017, 49(6):216.
TREXLER J T, PEARTON S J, HOLLOWAY P H, et al.. Comparison of Ni/Au, Pd/Au, and Cr/Au metallizations for Ohmic contacts to p-GaN[J].MRS Proc., 1996, 449:1091.
BUYANOVA I A, WAGNER M, CHEN W M, et al.. Photoluminescence of GaN:effect of electron irradiation[J].Appl. Phys. Lett., 1998, 73(20):2968-2970.
KOLNIÍK J, OGUZMAN İ H, BRENNAN K F, et al.. Monte Carlo calculation of electron initiated impact ionization in bulk zinc-blende and wurtzite GaN[J].J. Appl. Phys., 1997, 81(2):726-733.
LIMB J B, YOO D, RYOU J H, et al.. GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition[J].Appl. Phys. Lett., 2006, 89(1):011112-1-3.
VASHAEI Z, CICEK E, BAYRAM C, et al.. GaN avalanche photodiodes grown on m-plane freestanding GaN substrate[J].Appl. Phys. Lett., 2010, 96(20):201908-1-3.
PAU J L, BAYRAM C, MCCLINTOCK R, et al.. Back-illuminated separate absorption and multiplication GaN avalanche photodiodes[J].Appl. Phys. Lett., 2008, 92(10):101120-1-3.
BAYRAM C, PAU J L, MCCLINTOCK R, et al.. Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type δ-doping[J].Appl. Phys. Lett., 2008, 92(24):241103-1-3.
LIN J C, SU Y K, CHANG S J, et al.. High responsivity of GaN p-i-n photodiode by using low-temperature interlayer[J].Appl. Phys. Lett., 2007, 91(17):173502-1-3.
MCCLINTOCK R, PAU J L, MINDER K, et al.. Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes[J].Appl. Phys. Lett., 2007, 90(14):141112-1-3.
HUANG Y, CHEN D J, LU H, et al.. Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes[J].Appl. Phys. Lett., 2012, 101(25):253516-1-4.
CHOI S, KIM H J, ZHANG Y,et al.. Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates[J].IEEE Photonics Technol. Lett., 2009, 21(20):1526-1528.
SMORCHKOVA I P, HAUS E, HEYING B, et al.. Mg doping of gan layers grown by plasma-assisted molecular-beam epitaxy[J].Appl. Phys. Lett., 2000, 76(6):718-720.
0
Views
100
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution