Guo-tao XIANG, Xiao-tong LIU, Qing XIA, et al. Upconversion Luminescence Properties of β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+. [J]. Chinese Journal of Luminescence 41(6):679-683(2020)
DOI:
Guo-tao XIANG, Xiao-tong LIU, Qing XIA, et al. Upconversion Luminescence Properties of β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+. [J]. Chinese Journal of Luminescence 41(6):679-683(2020) DOI: 10.3788/fgxb20204106.0679.
Upconversion Luminescence Properties of β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+
In this work, a solvothermal process was used to synthesize the β-NaYF,4,:20%Yb,3+,/2%Er,3+, core nanoparticles(NPs) and β-NaYF,4,:20%Yb,3+,/2%Er,3+,@β-NaYF,4,:,x,%Yb,3+,(,x,=0, 20, 50, 70, 100) core-shell NPs. The size of the core NPs and core-shell NPs is about 30 nm and 40 nm respectively, implying that the thickness of the layer is 5 nm. After coating a β-NaYF,4, shell without Yb,3+, doping, the upconversion(UC) intensity is increased with a factor of 14 and 25 for green emission and red emission respectively, resulting from the suppression of deexcitation of Yb,3+, ions by the core-shell structure. However, the UC intensity is decreased dramatically with the increasing Yb,3+, ions concentration in the shell, due to the inefficient energy transfer process between the Yb,3+, ions in the shell and the Er,3+, ions in the core caused by the large distance between them. As the β-NaYF,4, shell completely converts to β-NaYbF,4, the UC intensity decreased 98.8% and 99.4% for green and red emission, respectively.
关键词
稀土离子上转换发光能量传递β-NaYF4
Keywords
rare earthupconversionenergy transferβ-NaYF4
references
MAI H X, ZHANG Y W, SI R, et al.. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J].J. Am. Chem. Soc., 2006, 128(19):6426-6436.
XIANG G T, LIU X T, LIU W, et al.. Multifunctional optical thermometry based on the stark sublevels of Er3+ in CaO-Y2O3:Yb3+/Er3+[J].J. Am. Ceram. Soc., 2020, 103(4):2540-2547.
TENG X, ZHU Y H, WEI W, et al.. Lanthanide-doped NaxScF3+x nanocrystals:Crystal structure evolution and multicolor tuning[J].J. Am. Chem. Soc., 2012, 134(20):8340-8343.
ABEL K A, BOYER J C, VAN VEGGEL F C J M. Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure[J].J. Am. Chem. Soc., 2009, 131(41):14644-14645.
QIN W P, LIU Z Y, SIN C N, et al.. Multi-ion cooperative processes in Yb3+ clusters[J].Light:Sci. Appl., 2014, 3:e193.
AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J].Chem. Rev., 2004, 104(1):139-174.
WANG Y F, LIU G Y, SUN L D, et al.. Nd3+ sensitized upconversion nanophosphors:efficient in vivo bioimaging probes with minimized heating effect[J].ACS Nano, 2013, 7(8):7200-7206.
MEHRABANI S, ARMANI A M. Blue upconversion laser based on thulium-doped silica m icrocavity[J].Opt. Lett., 2013, 38(21):4346-4349.
LUCKY S S, IDRIS N M, LI Z Q, et al.. Titania coated upconversion nanoparticles for near-infrared light triggered photo-dynamic therapy[J].ACS Nano, 2015, 9(1):191-205.
JOHNSON N J J, KORINEK A, DONG C H, et al.. Self-focusing by ostwald ripening:a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals[J].J. Am. Chem. Soc., 2012, 134(27):11068-11071.
BARRETO J A, O'MALLEY W, KUBEIL M, et al.. Nanomaterials:applications in cancer imaging and therapy[J].Adv. Mater., 2011, 23(12):H18-H40.
LI Z Q, ZHANG Y, JIANG S. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J].Adv. Mater., 2008, 20(24):4765-4769.
WANG Y F, SUN L D, XIAO J W, et al.. Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage[J].Chem. Eur. J., 2012, 18(18):5558-5564.
HUANG Y N, XIAO Q B, HU H S, et al.. 915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes[J].Small, 2016, 12(31):4200-4210.
ZHAN Q Q, QIAN J, LIANG H J, et al.. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation[J].ACS Nano, 2011, 5(5):3744-3757.
XIA A, DENG Y Y, SHI H, et al.. Polypeptide-functionalized NaYF4:Yb3+, Er3+ nanoparticles:red-emission biomarkers for high quality bioimaging using a 915 nm laser[J].ACS Appl. Mater. Interfaces, 2014, 6(20):18329-18336.
WEI Y, LU F Q, ZHANG X R, et al.. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb, Er nanoplates[J].Chem. Mater., 2006, 18(24):5733-5737.
LI Z Q, ZHANG Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence[J].Nanotechnology, 2008, 19(34):345606.
XIANG G T, ZHANG J H, HAO Z D, et al.. Importance of suppression of Yb3+ de-excitation to upconversion enhancement in β-NaYF4:Yb3+/Er3+@β-NaYF4 sandwiched structure nanocrystals[J].Inorg. Chem., 2015, 54(8):3921-3928.
CHEN X P, HUANG X Y, ZHANG Q Y. Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+, Yb3+ phosphor[J].J. Appl. Phys., 2009, 106(6):063518-1-4.