浏览全部资源
扫码关注微信
1.安庆师范大学 电子工程与智能制造学院, 安徽 安庆 246133
2.安徽师范大学 功能分子固体教育部重点实验室, 安徽 芜湖 241000
3.安徽师范大学 光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000
4.浙江师范大学 物理系, 浙江 金华 321004
[ "闻军(1987-),男,安徽桐城人,博士,副教授,2013年于中国科学技术大学获得博士学位,主要从事稀土发光材料的第一性原理计算的研究。E-mail:jwen@aqnu.edu.cn" ]
[ "郭海(1980-),男,江西吉水人,博士,教授,2005年于中国科学技术大学获得博士学位,主要从事新型稀土光学功能材料的实验研究。E-mail:ghh@zjnu.cn" ]
Published:2020-6,
Received:10 April 2020,
Accepted:15 April 2020
扫 描 看 全 文
Jun WEN, Yan WANG, Gui-sheng JIANG, et al. Thermodynamic Stabilities and Transition Levels of Native Defects and Lanthanide Ions in Sr2MgSi2O7. [J]. Chinese Journal of Luminescence 41(6):655-663(2020)
Jun WEN, Yan WANG, Gui-sheng JIANG, et al. Thermodynamic Stabilities and Transition Levels of Native Defects and Lanthanide Ions in Sr2MgSi2O7. [J]. Chinese Journal of Luminescence 41(6):655-663(2020) DOI: 10.3788/fgxb20204106.0655.
利用基于标准PBE0泛函的杂化密度泛函理论计算了Sr
2
MgSi
2
O
7
中本征缺陷、缺陷复合对及镧系离子的缺陷形成能、热力学转变能级以及光跃迁能级,以研究它们在Sr
2
MgSi
2
O
7
:Eu
2+
,Dy
3+
的热致发光和长余辉发光过程中所起的作用。PBE0计算的形成能结果表明,缺陷V
O
、Sr
Mg
、Mg
Sr
和Sr
Mg
-Mg
Sr
较容易在还原气氛下制备的Sr
2
MgSi
2
O
7
材料中生成。基于PBE0计算的基质带隙(7.18 eV)和缺陷形成能,获得了上述较易形成的缺陷与复合对以及镧系离子的热力学转变能级和光跃迁能级。根据理论计算结果与实验所确定的陷阱深度的直接对比,电中性及带一个负电荷的氧空位与Dy
3+
离子可以作为该材料中的电子陷阱,从而有助于其热致发光和长余辉发光。本研究的目的是利用第一性原理研究方法深入理解Sr
2
MgSi
2
O
7
:Eu
2+
,Dy
3+
的热致发光和长余辉发光机理,从而作为实验研究手段的一种有效补充。
The formation energies and thermodynamic/optical transition energy levels of native defects
defect complexes and lanthanide ions in the Sr
2
MgSi
2
O
7
(SMSO) are calculated from hybrid density functional theory(DFT) with the standard PBE0 functional in order to study their contributions to the thermoluminescence (TL) and long-lasting luminescence (LLL) of the material SMSO:Eu
2+
Dy
3+
. The PBE0-calculated formation energies reveal that the defects/complex V
O
Sr
Mg
Mg
Sr
and Sr
Mg
-Mg
Sr
are relatively easily generated in the SMSO samples prepared under reducing atmospheres. The thermodynamic and optical transition energy levels of the easily generated defects/complex above and the lanthanide ions in the host are derived from the PBE0-calculated band gap (of 7.18 eV) and formation energies. Based on their comparison with the experimental results of trap depths of the SMSO:Eu
2+
Dy
3+
the neutral and singly negatively charged V
O
and Dy
3+
ions (at Sr sites) are supposed to act as the electron traps. The aim of this study is to deeply understand the mechanisms of the TL and LLL in the long afterglow material SMSO:Eu
2+
Dy
3+
by using first-principles calculations
which can be adopted as the effective supplement of the experiment.
本征缺陷镧系离子热力学转变能级长余辉发光第一性原理
native defectslanthanide ionsthermodynamic transition energy levelslong-lasting luminescencefirst-principles
LIN Y H, TANG Z L, ZHANG Z T, et al.. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor[J].J. Mater. Sci. Lett., 2001, 20(16):1505-1506.
HAI O, REN Q, WU X L, et al.. Insights into the element gradient in the grain and luminescence mechanism of the long afterglow material Sr2MgSi2O7:Eu2+, Dy3+[J].J. Alloys Compds., 2019, 779:892-899.
XIAO L, ZHOU J, LIU G Z, et al.. Luminescent properties of R+ doped Sr2MgSi2O7:Eu2+, Dy3+ (R+=Li+, Ag+) phosphors[J].J. Alloys Compds., 2017, 712:24-29.
LI M H, WANG L L, RAN W G, et al.. Tunable Luminescence in Sr2MgSi2O7:Tb3+, Dy3+ phosphors based on energy transfer[J].Materials, 2017, 10(3):227-1-11.
SHI C S, FU Y B, LIU B, et al.. The roles of Eu2+ and Dy3+ in the blue long-lasting phosphor Sr2MgSi2O7:Eu2+, Dy3+[J].J. Lumin., 2007, 122-123:11-13.
SAHU I P, BISEN D P, BRAHME N, et al.. Enhanced luminescence performance of Sr2MgSi2O7:Eu2+ blue long persistence phosphor by co-doping with Ce3+ ions[J].J. Mater. Sci. Mater. Electron., 2016, 27(1):554-569.
WU H Y, HU Y H, CHEN L, et al.. Enhancement on the afterglow properties of Sr2MgSi2O7:Eu2+ by Er3+ cooping[J].Mater. Lett., 2011, 65(17-18):2676-2679.
DUAN H, DONG Y Z, HUANG Y, et al.. The important role of oxygen vacancies in Sr2MgSi2O7 phosphor[J].Phys. Lett. A, 2016, 380(9-10):1056-1062.
DUAN H, DONG Y Z, HUANG Y, et al.. First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host[J].J. Phys. D: Appl. Phys., 2016, 49(2):025304.
HASSINEN J, HÖLSÄ J, LAAMANEN T, et al.. Electronic structure of defects in Sr2MgSi2O7:Eu2+, La3+ persistent luminescence material[J].J. Non-Cryst. Solids, 2010, 356(37-40):2015-2019.
HÖLSÄ J, KIRM M, LAAMANEN T, et al.. Electronic structure of the Sr2MgSi2O7:Eu2+ persistent luminescence material[J].J. Lumin., 2009, 129(12):1560-1563.
DORENBOS P. Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+, Dy3+[J].Phys. Status Solidi B, 2005, 242(1):R7-R9.
JANOTTI A, VAN DE WALLE C G. Native point defects in ZnO[J].Phys. Rev. B, 2007, 76(16):165202.
ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters:the PBE0 model[J].J. Chem. Phys., 1999, 110(13):6158-6170.
PERDEWJ P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J].Phys. Rev. Lett., 1996, 77(18):3865-3868.
KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys. Rev. B, 1996, 54(16):11169-11186.
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J].Phys. Rev. B, 1999, 59(3):1758-1775.
BLÖCHL P E. Projector augmented-wave method[J].Phys. Rev. B, 1994, 50(24):17953-17979.
VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities:applications to Ⅲ-nitrides[J].J. Appl. Phys., 2004, 95(8):3851-3879.
FREYSOLDT C, GRABOWSKI B, HICKEL T,et al.. First-principles calculations for point defects in solids[J].Rev. Mod. Phys., 2014, 86(1):253-305.
OCHI Y. Crystal structure of Sr-akermanite glass-ceramics[J].Mater. Res. Bull., 2006, 41(10):1825-1834.
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J].Acta Crystallogr. Sect. A, 1976, 32(5):751-767.
KIM T G, LEE H S, LIN C C, et al.. Effects of additional Ce3+ doping on the luminescence of Li2SrSiO4:Eu2+ yellow phosphor[J].Appl. Phys. Lett., 2010, 96(6):061904-1-3.
ZHANG J, ZHANG T T, QIU Z X, et al.. Fine-tunable self-activated luminescence in apatite-type (Ba, Sr)5(PO4)3Br and the defect process[J].Inorg. Chem., 2018, 57(19):12354-12363.
HOHENBERG P, KOHN W. Inhomogeneous electron gas[J].Phys. Rev., 1964, 136(3B):B864-B871.
DORENBOS P. Valence stability of lanthanide ions in inorganic compounds[J].Chem. Mater., 2005, 17(25):6452-6456.
0
Views
109
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution