1.青海大学 新能源光伏产业研究中心, 青海 西宁 810016
2.青海大学 基础教学研究部, 青海 西宁 810016
扫 描 看 全 文
Hui-dong LU, Jin-long WANG, Sheng-nian TIE, et al. First-principle Study of Electronic and Optical Properties of Inorganic Perovskite Cs2SnI6 for Solar Cells. [J]. Chinese Journal of Luminescence 41(5):557-563(2020)
Hui-dong LU, Jin-long WANG, Sheng-nian TIE, et al. First-principle Study of Electronic and Optical Properties of Inorganic Perovskite Cs2SnI6 for Solar Cells. [J]. Chinese Journal of Luminescence 41(5):557-563(2020) DOI: 10.3788/fgxb20204105.0557.
近年来,Cs,2,SnI,6,作为一种无毒性、稳定性好的新型钙钛矿材料应用于太阳能电池中,其电池的光电转换效率由最初不到1%增长到现在的8.5%,使之成为有可能替代铅基钙钛矿太阳能电池的新型太阳能电池。本文采用基于广义密度泛函和杂化密度泛函的第一性原理方法研究了Cs,2,SnI,6,的电子结构、光学特性和钙钛矿太阳能电池的光电性能参数。研究结果表明,导带底和价带顶位于同一高对称点Γ而属于直接跃迁型半导体,且电子态主要来自于I-5p轨道和Sn-5s轨道。在近红外和可见光波长范围内有较高的吸收系数,当Cs,2,SnI,6,钙钛矿厚度达到10 μm时,吸收率在311~989 nm之间接近100%,不考虑潜在损失的情况下,理论上太阳能电池可获得短路电流为32.86 mA/cm,2,、开路电压0.91 V、填充因子87.4%、光电转换效率26.1%。为实验上制备高效Cs,2,SnI,6,钙钛矿太阳能电池提供了参考。
In recent years, Cs,2,SnI,6, has been used in solar cells as a non-toxic and stable new perovskite material. The power conversion efficiency(PCE) has exceeded 8.5% since the PCE of 1% was first reported in 2014, making the perovskite solar cells the best potential candidate of the new generation solar cells to replace the lead-based perovskite solar cells in the future. The electronic structures and absorption spectra of the defect perovskites Cs,2,SnI,6, were investigated by first-principles calcuation using PBE and HSE06 hybrid functional. The results show that optic band gaps based on HSE06 are 1.023 eV for Cs,2,SnI,6, at the Γ-point, illustrating a direct band gap. Electronic structures calculations show that the conduction band mainly consists of hybridization between the halogen p orbitals and Sn 5s orbitals, whereas the valence band is composed of the halogen p orbitals.The Cs,2,SnI,6, film is adopted as a light absorber layer for a lead-free perovskite solar cell and the power conversion efficiency 26.1% with open-circuit voltage of 0.91 V and short-circuit current of 32.86 mA/cm,2, is realized by optimizing the perovskite absorber thickness of 10 μm. It provides a reference for the experimental preparation of high-efficiency Cs,2,SnI,6, perovskite solar cells.
第一性原理钙钛矿太阳能电池电子结构光学性质
first-principlesperovskite solar cellselectronic structureoptical properties
XING G C, MATHEWS N, SUN S Y, et al.. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J].Science, 2013, 342(6156):344-347.
JEON N J, NOH J H, KIM Y C, et al.. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J].Nat. Mater., 2014, 13(9):897-903.
YANG W S, NOH J Y, JEON N J, et al.. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J].Science, 2015, 348(6240):1234-1237.
QUARTI C, GRANCINI G, MOSCONI E, et al.. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite:interplay of theory and experiment[J].J. Phys. Chem. Lett., 2014, 5(2):279-284.
柴磊, 钟敏.钙钛矿太阳能电池近期进展[J].物理学报, 2016, 65(23):237902-1-15.
CHAI L, ZHONG M. Recent research progress in perovskite solar cells[J].Acta Phys. Sinica, 2016, 65(23):237902-1-15. (in Chinese)
BAIKIE T, FANG Y N, KADRO J M, et al.. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J].J. Mater. Chem. A, 2013, 1(18):5628-5641.
ZHOU H P, CHEN Q, LI G, et al.. Interface engineering of highly efficient perovskite solar cells[J].Science, 2014, 345(6196):542-546.
XI J, WU Z X, XI K, et al.. Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability[J].Nano Energy, 2016, 26:438-445.
CHUNG I, LEE B, HE J Q, et al.. All-solid-state dye-sensitized solar cells with high efficiency[J].Nature, 2012, 485(7399):486-489.
SHIN H, KIM B M, JANG T, et al.. Surface state-mediated charge transfer of Cs2SnI6 and its application in dye-sensitized solar cells[J]. Adv. Energy Mater., 2019, 9(3):1803243-1-8.
QIU X F, CAO B Q, YUAN S, et al.. From unstable CsSnI3 to air-stable Cs2SnI6:a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient[J].Sol. Energy Mater. Sol. Cells, 2017, 159:227-234.
QIU X F, JIANG Y N, ZHANG H L, et al.. Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers[J].Phys. Status Solidi-Rapid Res. Lett., 2016, 10(8):587-591.
KALTZOGLOU A, ANTONIADOU M, KONTOS A G, et al.. Optical-vibrational properties of the Cs2SnX6 (X=Cl, Br, I) defect perovskites and hole-transport efficiency in dye-sensitized solar cells[J].J. Phys. Chem. C, 2016, 120(22):11777-11785.
LEE B, STOUMPOS C C, ZHOU N J, et al.. Air-stable molecular semiconducting iodosalts for solar cell applications:Cs2SnI6 as a hole conductor[J].J. Am. Chem. Soc., 2014, 136(43):15379-15385.
LEE B, EZHUMALAI Y, LEE W, et al.. Cs2SnI6-encapsulated multidye-sensitized all-solid-state solar cells[J].ACS Appl. Mater. Interfaces, 2019, 11(24):21424-21434.
YANG W S, PARK B W, JUNG E H, et al.. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J].Science, 2017, 356(6345):1376-1379.
KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys. Rev. B, 1996, 54(16):11169-11186.
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J].Phys. Rev. Lett., 1996, 77(18):3865-3868.
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J].Phys. Rev. B, 1999, 59(3):1758-1775.
KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al.. Influence of the exchange screening parameter on the performance of screened hybrid functionals[J].J. Chem. Phys., 2006, 125(22):224106-1-5.
HAAS P, TRAN F, BLAHA P. Calculation of the lattice constant of solids with semilocal functionals[J].Phys. Rev. B, 2009, 79(8):085104-1-10.
WERKER W. Die krystallstruktur des Rb2SnJ6 und Cs2SnJ6[J].Recl. Trav. Chim. Pays-Bas, 1939, 58(3):257-258.
WANG G T, WANG D Y, SHI X B. Electronic structure and optical properties of Cs2AX'2X4(A=Ge, Sn, Pb; X', X=Cl, Br, I)[J].AIP Adv., 2015, 5(12):127224-1-7.
XIAO Z W, LEI H C, ZHANG X, et al.. Ligand-hole in[SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6[J].Bull. Chem. Soc. Japan, 2015, 88(9):1250-1255.
MAUGHAN A E, GANOSE A M, BORDELON M M, et al.. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6[J].J. Am. Chem. Soc., 2016, 138(27):8453-8464.
HUANG H M, JIANG Z Y, LUO S J. First-principles investigations on the mechanical, thermal, electronic, and optical properties of the defect perovskites Cs2SnX6 (X=Cl, Br, I)[J].Chin. Phys. B, 2017, 26(9):096301-1-8.
RASUKKANNU M, VELAUTHAPILLAI D, VAJEESTON P. A first-principle study of the electronic, mechanical and optical properties of inorganic perovskite Cs2SnI6 for intermediate-band solar cells[J].Mater. Lett., 2018, 218:233-236.
张丽丽, 夏桐, 刘桂安, 等.第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质[J].物理学报, 2019, 68(1):017401-1-9.
ZHANG L L, XIA T, LIU G A, et al.. Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles[J].Acta Phys. Sinica, 2019, 68(1):017401-1-9. (in Chinese)
QIAO J S, KONG X H, HU Z X, et al.. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J].Nat. Commun., 2014, 5:4475-1-7.
BERMEL P, LUO C Y, ZENG L R, et al.. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals[J].Opt. Express, 2007, 15(25):16986-17000.
DEWAN R, VASILEV I, JOVANOV V, et al.. Optical enhancement and losses of pyramid textured thin-film silicon solar cells[J].J. Appl. Phys., 2011, 110(1):013101-1-10.
ASTM International. 2012 Annual Book of ASTM Standards [M]. Englewood:ASTM, 2012.
MA X X, LI Z S. The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation[J].Appl. Surf. Sci., 2018, 428(2):140-147.
PEEDIKAKKANDY L, NADUVATH J, MALLICK S, et al.. Lead free, air stable perovskite derivative Cs2SnI6 as HTM in DSSCs employing TiO2 nanotubes as photoanode[J].Mater. Res. Bull., 2018, 108(10):113-119.
0
Views
55
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution