Xue-yuan CHEN, Da-tao TU, Wei ZHENG. Perspectives for Researchers in Inorganic Luminescent Nanomaterials:How to Move Out of Current Comfort Zones?. [J]. Chinese Journal of Luminescence 41(5):498-501(2020)
DOI:
Xue-yuan CHEN, Da-tao TU, Wei ZHENG. Perspectives for Researchers in Inorganic Luminescent Nanomaterials:How to Move Out of Current Comfort Zones?. [J]. Chinese Journal of Luminescence 41(5):498-501(2020) DOI: 10.3788/fgxb20204105.0498.
Perspectives for Researchers in Inorganic Luminescent Nanomaterials:How to Move Out of Current Comfort Zones?
Inorganic luminescent nanomaterials have shown great promise in various fields due to their unique optical properties. Base on the authors' research experience, we herein offer our perspectives for researchers in inorganic luminescent nanomaterials, including focusing on the frontiers of so-called "pain points" and "unpopular topics" of this field, and facing the national major demands. We encourage researchers in this field to move out of their own comfort zones and devote themselves to the distinctive areas, in an effort to promote the sustainable development of inorganic luminescent nanomaterials.
HUANG P, ZHENG W, GONG Z L, et al.. Rare earth ion-and transition metal ion-doped inorganic luminescent nanocrystals:from fundamentals to biodetection[J]. Mater. Today Nano, 2019, 5:100031.
WANG F, LIU X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chem. Soc. Rev., 2009, 38(4):976-989.
BORISOV S M, WOLFBEIS O S. Optical biosensors[J]. Chem. Rev., 2008, 108(2):423-461.
ZHONG Y T, MA Z R, WANG F F, et al.. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles[J]. Nat. Biotechnol., 2019, 37(11):1322-1331.
TU D T, ZHENG W, HUANG P, et al.. Europium-activated luminescent nanoprobes:from fundamentals to bioapplications[J]. Coord. Chem. Rev., 2019, 378:104-120.
ZHENG W, TU D T, LIU Y S,et al.. Lanthanide-doped luminescent materials:electronic structures, optical properties, and bioapplications[J]. Sci. China Chem., 2014, 44(2):168-179. (in Chinese)
TANNER P A, ZHOU L, DUAN C K, et al.. Misconceptions in electronic energy transfer:bridging the gap between chemistry and physics[J]. Chem. Soc. Rev., 2018, 47(14):5234-5265.
ZHENG W, HUANG P, TU D T, et al.. Lanthanide-doped upconversion nano-bioprobes:electronic structures, optical properties, and biodetection[J]. Chem. Soc. Rev., 2015, 44(6):1379-1415.
ZHOU J, CHIZHIK A I, CHU S, et al.. Single-particle spectroscopy for functional nanomaterials[J]. Nature, 2020, 579(7797):41-50.
PARK Y S, MALKO A V, VELA J, et al.. Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy[J]. Phys. Rev. Lett., 2011, 106(18):4.
ZHENG W, ZHOU S Y, XU J, et al.. Ultrasensitive luminescent in vitro detection for tumor markers based on inorganic lanthanide nano-bioprobes[J]. Adv. Sci., 2016, 3(11):13.
ZHANG F, SHI Q H, ZHANG Y C, et al.. Fluorescence upconversion microbarcodes for multiplexed biological detection:nucleic acid encoding[J]. Adv. Mater., 2011, 23(33):3775-3779.
ZHOU J, LIU Q, FENG W, et al.. Upconversion luminescent materials:advances and applications[J]. Chem. Rev., 2015, 115(1):395-465.
GAI S L, LI C X, YANG P P, et al.. Recent progress in rare earth micro/nanocrystals:soft chemical synthesis, luminescent properties, and biomedical applications[J]. Chem. Rev., 2014, 114(4):2343-2389.
LIU J N, BU W B, SHI J L. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia[J]. Chem. Rev., 2017, 117(9):6160-6224.
DONG H, DU S R, ZHENG X Y, et al.. Lanthanide nanoparticles:from design toward bioimaging and therapy[J]. Chem. Rev., 2015, 115(19):10725-10815.
LUCKY S S, SOO K C, ZHANG Y. Nanoparticles in photodynamic therapy[J]. Chem. Rev., 2015, 115(4):1990-2042.
CHENG L, WANG C, FENG L Z, et al.. Functional nanomaterials for phototherapies of cancer[J]. Chem. Rev., 2014, 114(21):10869-10939.