1. 南京信息工程大学 江苏省大气环境与装备技术协同创新中心,江苏 南京,210044
2. 南京信息工程大学 江苏省气象探测与信息处理重点实验室, 江苏 南京 210044
扫 描 看 全 文
DING Rong, CHANG Jian-hua, KONG Chun-xia, et al. Passively Q-switched Nd: YVO4 Laser Based on Graphene Quantum Dots. [J]. Chinese Journal of Luminescence 41(1):63-70(2020)
DING Rong, CHANG Jian-hua, KONG Chun-xia, et al. Passively Q-switched Nd: YVO4 Laser Based on Graphene Quantum Dots. [J]. Chinese Journal of Luminescence 41(1):63-70(2020) DOI: 10.3788/fgxb20204101.0063.
采用水热法制备了石墨烯量子点(GQDs)可饱和吸收体(SA)。对GQDs SA的光学特性进行表征,估算出其调制深度为6.9%。将GQDs作为SA应用于二极管端面泵浦Nd:YVO,4,激光器,实现了1 063.5 nm处的被动调,Q,激光输出。在吸收泵浦功率为9.12 W时,输出脉冲的重复频率为1.64 MHz,脉冲宽度为200 ns,对应的脉冲能量为0.51 J,峰值功率为2.5 W。
In this paper, graphene quantum dots (GQDs) saturable absorber (SA) was prepared by hydrothermal method. The optical properties of the GQDs SA was characterized and the modulation depth was calculated to be 6.9%. Using the GQDs SA into diode-end-pumped Nd:YVO,4, laser, a passively ,Q,-switched operation of 1 063.5 nm laser was realized. Pulses as short as 200 ns under a repetition frequency of 1.64 MHz were generated at the absorbed pump power of 9.12 W, implying a pulse energy of 0.51 J with the peak power of 2.5 W.
固体激光器脉冲激光石墨烯量子点可饱和吸收体被动调Q
solid state laserpulse lasergraphene quantum dotssaturable absorberpassively Q-switched
ZHAO S,ZHAO J,LI G,et al.. Doubly Q-switched laser with electric-optic modulator and GaAs saturable absorber[J]. Laser Technol., 2006,3(10):471-473.
OKHOTNIKOV O,GRUDININ A,PESSA M.Ultra-fast fibre laser systems based on SESAM technology:new horizons and applications[J]. N. J. Phys., 2004,6:177.
MEHNER E,BERNARD B,GIESSEN H,et al.. Sub-20-ps pulses from a passively Q-switched microchip laser at 1 MHz repetition rate[J]. Opt. Lett., 2014,39(10):2940-2943.
YAO B Q,TIAN Y,LI G,et al.. InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers[J]. Opt. Express, 2010,18(13):13574-13579.
WANG T J,WANG J,WANG Y G,et al.. High-power passively Q-switched Nd:GdVO4 laser with a reflective graphene oxide saturable absorber[J]. Chin. Opt. Lett., 2019,17(2):020009-1-5.
ZHAO W F,YU H,LIAO M Z,et al.. Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking[J]. Semicond. Sci. Technol., 2017,32(2):025013-1-6.
王士忠,张祖兴,胡芳仁. 基于单壁碳纳米管的双向锁模掺铒光纤激光器[J].光子学报, 2016,45(10):1014002. WANG S Z,ZHANG Z X,HU F R. Bidirectional erbium-doped fiber laser mode-locked by single-wall carbon nanotubes[J]. Acta Photon. Sinica, 2016,45(10):1014002. (in Chinese)
徐翔,江曼,李雕,等. 基于石墨烯的宽带可饱和吸收体的制备及其在激光器中的应用[J].光子学报, 2014,43(9):0914005. XU X,JIANG M,LI D,et al.. The preparation of graphene based broadband saturable absorber and its application in laser[J]. Acta Photon. Sinica, 2014,43(9):0914005. (in Chinese)
ZHANG H,TANG D Y,KNIZE R J,et al.. Graphene mode locked,wavelength-tunable,dissipative soliton fiber laser[J]. Appl. Phys. Lett., 2010,96(11):111112-1-3.
ZHAO J Q,YAN P G,RUAN S C. Observations of three types of pulses in an erbium-doped fiber laser by incorporating a graphene saturable absorber[J]. Appl. Opt., 2013,52(35):8465-8470.
李雕,江曼,祁媚,等. 基于石墨烯的2m掺铥光纤被动调Q激光器[J].光子学报, 2013,42(8):978-982. LI D,JIANG M,QI M,et al.. Graphene-based 2m Tm3+-doped fiber passively Q-switched laser[J]. Acta Photon. Sinica, 2013,42(8):978-982. (in Chinese)
HUANG S S,WANG Y G,YAN P G,et al.. High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber[J]. Laser Phys., 2014,24(1):015001.
MATTHEISS L F. Band structures of transition-metal-dichalcogenide layer compounds[J]. Phys. Rev. B, 1973,8(8):3719-3740.
WANG Q H,KALANTAR-ZADEH K,KIS A,et al.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat. Nanotechnol., 2012,7(11):699-712.
YAN P G,LIU A J,CHEN Y S,et al.. Microfiber-based WS2-film saturable absorber for ultra-fast photonics[J]. Opt. Mater. Express, 2015,5(3):479-489.
LUO Z Q,HUANG Y Z,ZHONG M,et al.. 1-,1.5-,and 2-m fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber[J]. J. Lightw. Technol., 2014,32(24):4679-4686.
CHANG J H,YANG Z B,LI H H,et al.. Passively Q-switched Nd:YVO4/PPLN green laser with a few-layered MoS2 saturable absorber[J]. Opt. Rev., 2017,24(6):765-771.
GE P G,LIU J,JIANG S Z,et al.. Compact Q-switched 2m Tm:GdVO4 laser with MoS2 absorber[J]. Photon. Res., 2015,3(5):256-259.
WANG S X,YU H H,ZHANG H J,et al.. Broadband few-layer MoS2 saturable absorbers[J]. Adv. Mater., 2014,26(21):3538-3544.
CAFISO S D D D,UGOLOTTI E,SCHMIDT A,et al.. Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber[J]. Opt. Lett., 2013,38(10):1745-1747.
JANULEWICZ K A,HAPIDDIN A,JOSEPH D,et al.. Nonlinear absorption and optical damage threshold of carbon-based nanostructured material embedded in a protein[J]. Appl. Phys. A, 2014,117(4):1811-1819.
CHO W B,YIM J H,CHOI S Y,et al.. Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers[J]. Adv. Funct. Mater., 2010,20(12):1937-1943.
BONACCORSO F,SUN Z P. Solution processing of graphene,topological insulators and other 2D crystals for ultrafast photonics[J]. Opt. Mater. Express, 2014,4(1):63-78.
RITTER K A,LYDING J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nat. Mater., 2009,8(3):235-242.
BAKER S N,BAKER G A. Luminescent carbon nanodots:emergent nanolights[J]. Angew. Chem. Int. Ed., 2010,49(38):6726-6744.
MALYAREVICH A M,DENISOV I A,SAVITSKY V G,et al.. Glass doped with PbS quantum dots for passive Q switching of a 1.54-microm laser[J]. Appl. Opt., 2000,39(24):4345-4347.
PENG X G,SCHLAMP M C,KADAVANICH A V,et al.. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. J. Am. Chem. Soc., 1997,119(30):7019-7029.
YANG D Z,CHEN Q F,XU S K. Synthesis of CdSe/CdS with a simple non-top-based route[J]. J. Lumin., 2007,126(2):853-858.
ZAN H W,LI C H,YEH C C,et al.. Room-temperature-operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors[J]. Appl. Phys. Lett., 2011,98(25):253503.
GREEN M,O'BRIEN P. Recent advances in the preparation of semiconductors as isolated nanometric particles:new routes to quantum dots[J]. Chem. Commun., 1999(22):2235-2241.
HISYAM M B,RUSDI M F,LATIFF A A,et al.. PMMA-doped CdSe quantum dots as saturable absorber in a Q-switched all-fiber laser[J]. Chin. Opt. Lett., 2016,14(8):081404-1-5.
LI J Z,DONG H X,XU B,et al.. CsPbBr3 perovskite quantum dots:saturable absorption properties and passively Q-switched visible lasers[J]. Photon. Res., 2017,5(5):457-460.
WANG Y M,ZHAN Y,LEE S,et al.. Q-switched Yb3+:YAG laser using plasmonic Cu2-xSe quantum dots as saturable absorbers[J]. Opt. Mater., 2018,78:102-106.
PAN D Y,ZHANG J C,LI Z,et al.. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Adv. Mater., 2010,22(6):734-738.
TANG L B,JI R B,CAO X K,et al.. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots[J]. ACS Nano, 2012,6(6):5102-5110.
0
Views
26
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution