Passively Q-switched Yb3+-doped Fiber Laser Based on Microfiber-single Wall Carbon Nanotube Saturable Absorber
|更新时间:2020-08-12
|
Passively Q-switched Yb3+-doped Fiber Laser Based on Microfiber-single Wall Carbon Nanotube Saturable Absorber
Chinese Journal of LuminescenceVol. 38, Issue 5, Pages: 630-635(2017)
作者机构:
1. 中国科学院国家天文台长春人造卫星观测站,吉林 长春,130117
2. 吉林大学集成光电子国家重点联合实验室吉林大学实验区,吉林 长春,130012
作者简介:
基金信息:
Supported by National Natural Science Foundation of China(60908001,61077033,61378004,11274139,61605219);Natural Science Foundation for Young Scientists of Jilin Province(20160520085JH)
KANG Zhe, LIU Ming-yi, LIU Cheng-zhi etc. Passively<em> Q</em>-switched Yb<sup>3+</sup>-doped Fiber Laser Based on Microfiber-single Wall Carbon Nanotube Saturable Absorber[J]. Chinese Journal of Luminescence, 2017,38(5): 630-635
KANG Zhe, LIU Ming-yi, LIU Cheng-zhi etc. Passively<em> Q</em>-switched Yb<sup>3+</sup>-doped Fiber Laser Based on Microfiber-single Wall Carbon Nanotube Saturable Absorber[J]. Chinese Journal of Luminescence, 2017,38(5): 630-635 DOI: 10.3788/fgxb20173805.0630.
Passively Q-switched Yb3+-doped Fiber Laser Based on Microfiber-single Wall Carbon Nanotube Saturable Absorber
-doped fiber laser based on the microfiber-single wall carbon nanotube (SWCNT) saturable absorber (SA) was reported. The microfiber was fabricated by drawing the single mode silica fiber and then composite with the SWCNT solution
further on preparation of all fiber integrated devices. By inserting the SA in a Yb
3+
-doped fiber laser ring cavity pumped by a 976 nm laser diode
stable passively
Q
-switched pulse train occurs at 53 mW incident pump power. Increasing the pump power to 76 mW
3.1 s pulses at 1 039 nm with a repetition rate of 25.5 kHz are obtained
which corresponds to single pulse energy of 941 nJ. This result shows that the microfiber based SA can enhance the threshold of material damage and obtain high energy pulse laser.
关键词
Keywords
references
SHI W, FANG Q, ZHU X S, et al.. Fiber lasers and their applications [J]. Appl. Opt., 2014, 53(28):6554-6568.
KELLER U. Recent developments in compact ultrafast lasers [J]. Nature, 2003, 424(6950):831-838.
黄绣江, 刘永智, 隋展, 等. 超短脉冲光纤激光器新进展及其应用 [J]. 应用光学, 2004, 25(6):16-21. HUANG X J, LIU Y Z, SUI Z, et al.. Development and application of ultrafast pulse fiber laser [J]. J. Appl. Opt., 2004, 25(6):16-21. (in Chinese)
王璞, 刘江. 2.0 m掺铥超短脉冲光纤激光器研究进展及展望 [J]. 中国激光, 2013, 40(6):0601002-1-12. WANG P, LIU J. Progress and prospect on ultrafast Tm-doped fiber lasers at 2 m wavelength [J]. Chin. J. Lasers, 2013, 40(6):0601002-1-12. (in Chinese)
FERMANN M E, HARTL I. Ultrafast fiber laser technology [J]. IEEE J. Sel. Top. Quant. Electron., 2009, 15(1):191-206.
LI X L, XU J L, WU Y Z, et al.. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser [J]. Opt. Express, 2011, 19(10):9950-9955.
LIU H H, CHOW K K, YAMASHITA S, et al.. Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation [J]. Opt. Laser Technol., 2013, 45:713-716.
甘雨, 向望华, 周晓芳, 等. 被动调Q锁模掺镱光纤激光器 [J]. 中国激光, 2006, 33(8):1021-1024. GAN Y, XIANG W H, ZHOU X F, et al.. Passive Q-switching and modelocking Yb3+-doped fiber laser [J]. Chin. J. Lasers, 2006, 33(8):1021-1024. (in Chinese)
SOUSA J M, OKHOTNIKOV O G. Multiple wavelength Q-switched fiber laser [J]. IEEE Photon. Technol. Lett., 1999, 11(9):1117-1119.
SET S Y, YAGUCHI H, TANAKA Y, et al.. Laser mode locking using a saturable absorber incorporating carbon nanotubes [J]. J. Lightwave Technol., 2004, 22(1):51-56.
TAUSENEV A V, OBRAZTAOVA E D, LOBACH A S, et al.. 177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes [J]. Appl. Phys. Lett., 2008, 92(17):171113-1-3.
SCARDACI V, ROZHIN A G, TAN P H, et al.. Carbon nanotubes for ultrafast photonics [J]. Phys. Stat. Sol. (b), 2007, 244(11):4303-4307.
KELLEHER E J R, TRAVERS J C, SUN Z P, et al.. Nanosecond-pulse fiber lasers mode-locked with nanotubes [J]. Appl. Phys. Lett., 2009, 95(11):111108-1-3.
QIN G S, SUZUKI T, OHISHI Y. Widely tunable passively mode-locked fiber laser with carbon nanotube films [J]. Opt. Rev., 2010, 17(3):97-99.
ZHOU D P, WEI L, DONG B, et al.. Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber [J]. IEEE Photon. Technol. Lett., 2010, 22(1):9-11.
朱攀, 桑梅, 王晓龙, 等. 基于单壁碳纳米管可饱和吸收体的被动锁模光纤激光器研究 [J]. 光电子激光, 2012, 23(9):1686-1690. ZHU P, SANG M, WANG X L, et al.. A passive mode-locking pulse fiber laser based on single-walled carbon nanotube saturable absorber [J]. J. Optoelectron. Laser, 2012, 23(9):1686-1690. (in Chinese)
于永芹, 郑家容, 杜晨林, 等. 碳纳米管被动锁模光纤激光器的研究进展[J]. 激光与红外, 2011, 41(9):953-960. YU Y Q, ZHENG J R, DU C L, et al.. Research and progress of carbon nanotubes passively mode-locked fiber laser [J]. Laser Infrared, 2011, 41(9):953-960. (in Chinese)
董信征, 于振华, 田金荣, 等. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器 [J]. 物理学报, 2014, 63(3):034202-1-5. DONG X Z, YU Z H, TIAN J R, et al.. A 147 fs mode-locked erbium-doped fiber laser with a carbon nanotubes saturable absorber in evanescent field [J]. Acta Phys. Sinica, 2014, 63(3):034202-1-5. (in Chinese)
张成, 罗正钱, 王金章, 等. 熔锥光纤倏逝场作用石墨烯双波长锁模掺镱光纤激光器 [J]. 中国激光, 2012, 39(6):0602006-1-5. ZHANG C, LUO Z Q, WANG J Z, et al.. Dual-wavelength mode-locked Yb-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field [J]. Chin. J. Lasers, 2012, 39(6):0602006-1-5. (in Chinese)
AL-MASOODI A H H, ISMAIL M F, AHMAD F, et al.. Q-switched Yb-doped fiber laser operating at 1 073 nm using a carbon nanotubes saturable absorber [J]. Microwave Opt. Technol. Lett., 2014, 56(8):1770-1773.
DONG B, LIAW C Y, HAO J Z, et al.. Nanotube Q-switched low-threshold linear cavity tunable erbium-doped fiber laser [J]. Appl. Opt., 2010, 49(31):5989-5992.
LIU J, WU S D, YANG Q H, et al.. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser [J]. Opt. Lett., 2011, 36(20):4008-4010.
KANG Z, GUO X Y, JIA Z X, et al.. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser [J]. Opt. Mater. Express, 2013, 3(11):1986-1991.