

浏览全部资源
扫码关注微信
1. 华侨大学信息科学与工程学院 福建省光传输与变换重点实验室,福建 厦门,361021
2. 华侨大学 机电及自动化学院, 福建 厦门 361021
Received:14 September 2016,
Revised:11 November 2016,
Published:05 March 2017
移动端阅览
唐帆, 王丹, 郭震宁等. LED异形灯的散热设计与实验[J]. 发光学报, 2017,38(3): 365-371
TANG Fan, WANG Dan, GUO Zhen-ning etc. Thermal Design and Experiment for Special-shaped LED Lamp[J]. Chinese Journal of Luminescence, 2017,38(3): 365-371
唐帆, 王丹, 郭震宁等. LED异形灯的散热设计与实验[J]. 发光学报, 2017,38(3): 365-371 DOI: 10.3788/fgxb20173803.0365.
TANG Fan, WANG Dan, GUO Zhen-ning etc. Thermal Design and Experiment for Special-shaped LED Lamp[J]. Chinese Journal of Luminescence, 2017,38(3): 365-371 DOI: 10.3788/fgxb20173803.0365.
为了提高LED灯具的散热能力,基于烟囱效应原理,设计了一种新型的LED灯具散热结构。该结构仅采用一块圆柱状基板,不需要散热器,突破了传统LED灯具的构造模式。运用软件Solidworks构建三维模型,用其插件Flow Simulation进行热仿真。当功率为10 W时,LED芯片最高温度为81.34℃。当功率增加到15 W时,最高温度变为105.54℃,高于芯片安全工作温度85℃。因此,本文提出在基板中间加入散热器的改进方案,使LED芯片最高温度下降了30.79℃。并以散热器翅片数12个、内环直径20 mm、翅片厚度1 mm为基础模型参数,进行优化试验。研究表明:在翅片数为12个、内环直径为12 mm、翅片厚度为1 mm时,LED异形灯的散热效果最好,此时,LED异形灯的最高温度为72.21℃。当功率为8,13,15,17,19 W时,LED异形灯芯片的温度都满足LED工作的安全要求。经过对8 W的LED异形灯样品的实验测试,测得其最高温度为53℃,与仿真结果仅相差1.01℃,证实了研究的准确性。所设计的LED异形灯,为解决大功率LED散热问题提供了一条新的途径。
In order to improve the cooling capacity of LED lamps and lanterns
a new type of LED lamp radiating structure was designed based on the principle of the chimney effect. The new type of LED lamp without radiator only used a cylindrical substrate break through the traditional mode of construction of LED lamps. A three-dimensional model was built by adopting Solidworks
and its plug called Flow Simulation was used to simulate the model. The highest temperature of LED chip is 81.34℃ when the power is 10 W. The highest temperature changes to 105.54℃ at 15 W
higher than the security temperature of LED chip. Therefore
an improved scheme of joining the radiator in the middle of the substrate was put forward. Then
the maximum temperature of LED chip reduces by 30.79℃. Based on the model in which the number of fins is 12
the diameter of inner ring is 20 mm
the thickness of fins is 1 mm
the thermal simulation was carried on. The results show that the special-shaped LED lamp has the best cooling capacity when the number of fins is 12
the diameter of inner ring is 12 mm
and the thickness of the fins is 1 mm. At the moment
the highest temperature is 72.21℃. The temperature of LED lamp can all meet the security requirements when the power of the special-shaped LED lamp is 8
13
15
17 and 19 W. The experiment results of 8 W LED lamp show that the highest temperature is 53℃
higher than the results of the simulation results only 1.01℃. It confirms the correctness of the simulation. In conclusion
the designed special-shaped LED lamps provide a new way to solve the heat dissipation problem of high power LED.
董丽, 刘华, 王尧, 等. 紧凑型LED配光设计中光源模型可靠性研究[J]. 光子学报, 2014, 43(2):0222003-1-5. DONG L, LIU H, WANG Y, et al.. Reliability of light source modeling for distribution design on compact LED[J]. Acta Photon. Sinica, 2014, 43(2):0222003-1-5. (in Chinese)
LIN G, ZHOU Y, TRAN M, et al.. Materials challenges and solutions for the packaging of high power LEDs[C]. Proceedings of The 11th International Symposium on Advanced Packaging Materials:Processes, Properties and Interface, Taiwan, China, 2006:177-180.
ARIK M, PETROSKI J, WEAVER S. Thermal challenges in the future generation solid state lighting applications:light emitting diodes[C]. Proceedings of The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Hawaii, 2002:113-120.
赵新杰, 蔡忆昔, 王静, 等. 基于半导体制冷技术的LED前照灯散热器设计与优化[J]. 发光学报, 2014, 35(10):1269-1275. ZHAO X J, CAI Y X, WANG J, et al.. Thermal model design and optimize of LED headlamp cooling device based on semiconductor refrigeration[J]. Chin. J. Lumin., 2014, 35(10):1269-1275. (in Chinese)
周驰, 左敦稳, 孙玉利. 自然对流下LED集成芯片整体式热管散热器性能实验研究[J]. 发光学报, 2014, 35(11):1294-1400. ZHOU C, ZUO D W, SUN Y L. Experimental investigation of integrated heat pipe heat sink for multi-chip LED module in natural convection[J]. Chin. J. Lumin., 2014, 35(11):1294-1400. (in Chinese)
LUO X B, LIU S. A microjet array cooling system for thermal management of high-brightness LEDs[J]. IEEE Trans. Adv. Packg., 2007, 30(3):475-484.
汪双凤, 胡艳鑫, 陈金建. 应用于LED灯具散热的平板热管传热特性[J]. 工程热物理学报, 2012, 33(8):1371-1374. WANG S F, HU Y X, CHEN J J, et al.. Thermal performance of vapor chamber applied for LED cooling[J]. J. Engin. Thermophy., 2012, 33(8):1371-1374. (in Chinese)
朱鹏. 基于烟囱效应对大功率LED灯的强化散热[D]. 大连:大连理工大学, 2014. ZHU P. The Enhancement of Heat Dissipation of High Power LED Lamp with Chimney Effect[D]. Dalian:Dalian University of Technology, 2014. (in Chinese)
陈启勇, 何川, 高园园. 大功率LED路灯散热器自然对流的数值研究[J]. 半导体光电, 2011, 32(4):498-501. CHEN Q Y, HE C, GAO Y Y. Numerical study on natural convection of high-power LED street lamp heat sink[J]. Semicond. Optoelect., 2011, 32(4):498-501. (in Chinese)
唐帆, 郭震宁, 林介本, 等. LED球泡灯的烟囱效应散热设计与实验[J]. 发光学报, 2016, 37(5):624-630. TANG F, GUO Z N, LIN J B, et al.. Thermal design and experiment of LED bulb using chimney effect[J]. Chin. J. Lumin., 2016, 37(5):624-630. (in Chinese)
刘娇, 刘娟芳, 陈清华, 等. 替代100 W白炽灯的新型12 W LED球泡灯的散热性能研究[J]. 发光学报, 2014, 35(7):866-871. LIU J, LIU J F, CHEN Q H, et al.. Thermal management of novel 12 W LED bulb for the substitution of 100 W incandescent bulb[J]. Chin. J. Lumin., 2014, 35(7):866-871. (in Chinese)
曾海. LED散热设计与全方向灯光学设计[D]. 泉州:华侨大学, 2013. ZENG H. Heat Dissipation Design for LED and Optical Design for Omnidirectional Light[D]. Quanzhou:Huaqiao University, 2013. (in Chinese)
李本红, 刘海林. 烟囱效应在大功率LED灯具散热器设计中的影响分析[J]. 电子器件, 2014, 37(2):221-224. LI B H, LIU H L. Analysis of the chimney effect in thermal design of high-power LED lamps radiator[J]. Chin. J. Electron Dev., 2014, 37(2):221-224. (in Chinese)
刘海林. 大功率LED灯具散热封装组件的优化设计[D]. 宁波:宁波大学, 2013. LIU H L. Optimal Design of The Components in High-power LED Lamps Thermal Package[D]. Ningbo:Ningbo University, 2013. (in Chinese)
0
Views
116
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621