LI Jin-chai, JI Gui-lin, YANG Wei-huang etc. Emission Mechanism of High Al-content AlGaN Multiple Quantum Wells[J]. Chinese Journal of Luminescence, 2016,37(5): 513-518
LI Jin-chai, JI Gui-lin, YANG Wei-huang etc. Emission Mechanism of High Al-content AlGaN Multiple Quantum Wells[J]. Chinese Journal of Luminescence, 2016,37(5): 513-518 DOI: 10.3788/fgxb20163705.0513.
Emission Mechanism of High Al-content AlGaN Multiple Quantum Wells
The quantum efficiency of deep UV light emitting diodes (LED) drops dramatically with the increasing of Al content. Understanding the emission mechanism of high Al-content AlGaN multiple quantum wells (MQW) is the one of the most important objects for improving the quantum efficiency of deep UV LED. In this work
high Al-content AlGaN MQW structure with atomically flat hetero-interfaces was grown and characterized by photoluminescence (PL) measurements at different temperatures. The results indicate that there is a strong exciton-localization effect in the MQW structure and the emission is closely related to the hopping of the excitons. Due to the exciton delocalization and nonradiative recombination at defects
the PL intensity is strongly quenched at high temperatures.
关键词
Keywords
references
陈航洋,刘达艺,李金钗,等. 高AI组分Ⅲ族氮化物结构材料及其在深紫外LED应用的进展[J]. 物理学进展, 2013, 33(2):43-56. CHEN H Y, LIU D Y, LI J C, et al.. Development of high Al content structural Ⅲ nitrides and their applications in deep UV-LED[J]. Prog. Phys., 2013, 33(2):43-56. (in Chinese)
王军喜,闫建昌,郭亚楠,等. 氮化物深紫外LED研究新进展[J]. 中国科学:物理学力学天文学, 2015, 45(6):067303-1-20. WANG J X, YAN J C, GUO Y N, et al.. Recent progress of research on Ⅲ-nitride deep ultraviolet light-emitting diode[J]. Sci. Sinica Phys. Mech. Astron., 2015, 45(6):067303-1-20. (in Chinese)
BRYAN Z, BRYAN I, XIE J Q, et al.. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates[J]. Appl. Phys. Lett., 2015, 106(14):142107.
ZHUO X L, NI J C, LI J C, et al.. Band engineering of GaN/AlN quantum wells by Si dopants[J]. J. Appl. Phys., 2014, 115(12):124305-1-4.
ZHUANG Q Q, LIN W, YANG W H, et al.. Defect suppression in AlN epilayer using hierarchical growth units[J]. J. Phys. Chem. C, 2013, 117(27):14158-14164.
BANAL R G, FUNATO M, KAWAKAMI Y. Extremely high internal quantum efficiencies from AlGaN/AlN quantum wells emitting in the deep ultraviolet spectral region[J]. Appl. Phys. Lett., 2011, 99(1):011902-1-3.
LEROUX M, GRANDJEAN N, LAVGT M, et al.. Quantum confined stark effect due to built-in internal polarization fields in (Al, Ga)N/GaN quantum wells[J]. Phys. Rev. B, 1998, 58(20):R13371-R13374.
BASU P K. Theory of Optical Processes in Semiconductors:Bulk and Microstructures[M]. New York:Oxford University Press Inc., 2003.
KIM K, LAMBRECHT W R L, SEGALL B, et al.. Effective masses and valence-band splittings in GaN and AlN[J]. Phys. Rev. B, 1997, 56(12):7363-7375.
SCHENK H P D, LEROUX M, DE MIERRY P. Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck-Shockley relation[J]. J. Appl. Phys., 2000, 88(3):1525-1534.
MOON Y T, KIM D J, PARK J S, et al.. Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots[J]. Appl. Phys. Lett., 2001, 79(5):599-601.
CHO Y H, GAINER G H, LAM J B, et al.. Dynamics of anomalous optical transitions in AlxGa1-xN alloys[J]. Phys. Rev. B, 2000, 61(11):7203-7206.
LI J, NAM K B, LIN J Y, et al.. Optical and electrical properties of Al-rich AlGaN alloys[J]. Appl. Phys. Lett., 2001, 79(20):3245-3247.
CHUNG S J, SENTHIL KUMAR M, LEE H J, et al.. Investigations on alloy potential fluctuations in AlxGa1-xN epilayers using optical characterizations[J]. J. Appl. Phys., 2004, 95(7):3565-3568.
CHEN C H, HUANG L Y, CHEN Y F, et al.. Mechanism of enhanced luminescence in InxAlyGa1-x-yN quaternary alloys[J]. Appl. Phys. Lett., 2002, 80(8):1397-1399.
KAZLAUSKAS K, TAMULAITIS G, ?UKAUSKAS A, et al.. Localization and hopping of excitons in quaternary AlInGaN[J]. Phys. Stat. Sol.(c), 2002(1):512-515.
CHO Y H, GAINER G H, FISHER A J, et al.. "S-shaped" temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells[J]. Appl. Phys. Lett., 1998, 73(10):1370-1372.
KAZLAUSKAS K, TAMULAITIS G, POBEDINSKAS P, et al.. Exciton hopping in InxGa1-xN multiple quantum wells[J]. Phys. Rev. B, 2005, 71(8):085306.
WANG T, LIU Y H, LEE Y B, et al.. 1 mW AlInGaN-based ultraviolet light-emitting diode with an emission wavelength of 348 nm grown on sapphire substrate[J]. Appl. Phys. Lett., 2001, 81(14):2508-2510.
YASAN A, MCCLINTOCK R, MAYES K, et al.. Photoluminescence study of AlGaN-based 280 nm ultraviolet light-emitting diodes[J]. Appl. Phys. Lett., 2003, 83(20):4083-4085.
KAZLAUSKAS K, ?UKAUSKAS A, TAMULAITIS G, et al.. Exciton hopping and nonradiative decay in AlGaN epilayers[J]. Appl. Phys. Lett., 2005, 87(17):172102-1-3.
TARASENKO S A, KISELEV A A, IVCHENKO E L, et al.. Energy relaxation of localized excitons at finite temperature[J]. Semicond. Sci. Technol., 2001, 16(6):486-492.
BARANOVSKII S D, EICHMANN R, THOMAS P. Temperature-dependent exciton luminescence in quantum wells by computer simulation[J]. Phys. Rev. B, 1998, 58(19):13081-13087.
DEAN P J. Absorption and luminescence of excitons at neutral donors in gallium phosphide[J]. Phys. Rev., 1967, 157(3):655-667.
SUN Y P, CHO Y H, KIM H M, et al.. High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays[J]. Appl. Phys. Lett., 2005, 87(9):093115-1-3.