CHEN Tian-jue, LU Chun-hua, CUI Teng-li etc. Hydrothermal Synthesis of NaGdF<sub>4</sub>:Yb<sup>3+</sup>, Er<sup>3+</sup> and Na(Y,Gd)F<sub>4</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup>: Size Control and Luminescent Properties[J]. Chinese Journal of Luminescence, 2014,35(11): 1283-1290
CHEN Tian-jue, LU Chun-hua, CUI Teng-li etc. Hydrothermal Synthesis of NaGdF<sub>4</sub>:Yb<sup>3+</sup>, Er<sup>3+</sup> and Na(Y,Gd)F<sub>4</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup>: Size Control and Luminescent Properties[J]. Chinese Journal of Luminescence, 2014,35(11): 1283-1290 DOI: 10.3788/fgxb20143511.1283.
Hydrothermal Synthesis of NaGdF4:Yb3+, Er3+ and Na(Y,Gd)F4:Yb3+,Er3+: Size Control and Luminescent Properties
crystals were synthesized by hydrothermal methods. The size and luminous intensity of the particles can be adjusted by changing the temperature
time
pH value
the molar ratios of trisodium citrate to
Ln
3+
ions
F
-
to
Ln
3+
ions and Gd
3+
to Y
3+
ions. Diffraction (XRD)
photoluminescence (PL) spectra
and field emission-scanning electron microscopy (FE-SEM) were used to characterize and analysis the samples. The low pH value is found to promote the formation of GdF
3
while NaGdF
4
benefits from high pH value. The increasing of trisodium citrate content can restrain the growth of the particle to reduce the luminous intensity. The addition to the fluorine content accelerates the growth along (001) crystal orientation relative to (101) crystal orientation and further enhances luminous intensity. With the increasing of doped Y
3+
content
particle size increases
while the luminous intensity show a trend of rising after decline first.
关键词
Keywords
references
Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104(1):139-173.
Wang F, Deng R R, Wang J, et al. Tuning upconversion through energy migration in core-shell nanoparticles [J]. Nat. Mater., 2011, 10:968-973.
Wang J W, Tanner P A. Upconversion for white light generation by a single compound [J]. J. Am. Chem. Soc., 2010, 132(3):947-949.
Sivakumar S, Van Veggel F C J M, May P S. Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): A new up-conversion process [J]. J. Am. Chem. Soc., 2007, 129(3):620-625.
Wang L Y, Yan R X, Huo Z Y, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles [J]. Angew. Chem., Int. Ed., 2005, 44(37):6054-6057.
Yi G S, Lu H C, Zhao S Y, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors [J]. Nano Lett., 2004, 4(11):2191-2196.
Rakher M T, Ma L J, Slattery O, et al. Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion [J]. Nat. Photon., 2010, 4:786-791.
Liu T C, Cheng B M, Hu S F, et al. Highly stable red oxynitride -SiAlON:Pr3+ phosphor for light-emitting diodes [J]. Chem. Mater., 2011, 23(16):3698-3705.
Zhang X S, Yan C Y, Zheng H R. Spectroscopic study of the upconversion effect of Tm3+ [J]. Acta Photon. Sinica (光子学报), 2010, 39(8):1515-1518 (in Chinese).
Hagenmuller P. Inorganic Solid Fluoride Chemistry and Physics [M]. New York: Academy Press Inc., 1985:477-492.
Yan R X, Li Y D. Down/up conversion in Ln3+-doped YF3 nanocrystals [J]. Adv. Funct. Mater., 2005, 15(5):763-770.
An Y, Yao C, Qiao X F, et al. Influence of Yb3+ concentration on the fluorescence emissiom of Tm3+ in Tm3+ / Yb3+:LaF3 nanoparticles [J]. Acta Photon. Sinica (光子学报), 2010, 39(3):508-512 (in Chinese).
Xin Y H, Yuan H C, Li J J. Synthesis and strong near-infrared upconversion characteristics in rare earth doped NaGdF4 nanoparticles [J]. Trans. Mater. Heat Treatment (材料热处理学报), 2013, 34(3):26-29 (in Chinese).
Shen H X, Wang F, Fan X P. Hydrothermal synthesis and luminescence properties of NaGdF4:Eu3+ crystals [J]. Rare Met. Mater. Eng.(稀有金属材料与工程), 2010, 39(2):415-417 (in Chinese).
He F, Niu N, Wang L, et al. Influence of surfactants on the morphology, upconversion emission, and magnetic properties of -NaGdF4:Yb3+,Ln3+ (Ln=Er, Tm, Ho) [J]. Dalton Trans., 2013, 42:10019-10028.
Su Y K, Kyoungja W, Kipil L, et al. Highly bright multicolor tunable ultrasmall -Na(Y, Gd)F4:Ce, Tb, Eu/-NaYF4 core/shell nanocrystals [J]. Nanoscale, 2013, 5:9255-9263.
Gao D L, Gao W, Shi P, et al. pH- and surfactant-mediated tunable morphology and upconversion of rare-earth doped fluoride microcrystals [J]. RSC Adv., 2013, 3:14757-14765.
Wang P C, Liu C X, Zhao H F, et al. Synthesis of hexagonal NaYF4 nanoparticles and its particle size effect on conversion efficiency of Tb3+, Er3+ couples [J]. Chin. J. Lumin.(发光学报), 2012, 33(10):1068-1073 (in Chinese).
Gao S H, Liu F Y, Zhang B T, et al. Synthesis of NaYF4:Yb3+,Er3+@NaGdF4@TaOx multimodal nanoprobe for bioimaging applications [J]. Chinese J. Anal. Chem.(分析化学), 2013, 41(6):811-816 (in Chinese).
Deng H, Wang J W, Peng Q, et al. Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes [J]. Chem. Eur. J., 2005, 11(22):6519-6524.
Chen Z, Liu Z Y, Liu Y, et al. Controllable synthesis, upconversion luminescence, and paramagnetic properties of NaGdF4:Yb3+, Er3+ microrods [J]. J. Fluor. Chem., 2012, 144:157-164.
Johnson N J J, Oakden W, Stanisz G J, et al. Size-tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement [J]. Chem. Mater., 2011, 23(16):3714-3722.
Li C X, Yang J, Quan Z W, et al. Different microstructures of -NaYF4 fabricated by hydrothermal process: Effects of pH values and fluoride sources [J]. Chem. Mater., 2007, 19(20):4933-4942.
Niu N, Yang P P, He F, et al. Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures [J]. J. Mater. Chem., 2012, 22(21):10889-10899.
Gao S H, Liu F Y, Zhang B T, et al. Synthesis of NaYF4:Yb3+,Er3+@NaGdF4@TiOx multimodal nanoprobe for bioimaging applications [J]. Chin. J. Anal. Chem.(分析化学), 2013, 41(6):811-816 (in Chinese).