浏览全部资源
扫码关注微信
1. 太原理工大学新材料界面科学与工程教育部重点实验室,山西 太原,030024
2. 南京邮电大学有机电子与信息显示国家重点实验室培育基地信息材料与纳米技术研究院,江苏 南京,210046
3. 太原理工大学新材料工程技术研究中心,山西 太原,030024
Received:02 April 2013,
Revised:25 April 2013,
Published:10 July 2013
移动端阅览
陶鹏, 赵强, 景姝, 汪静霞, 吕壮, 陈柳青, 王华. 一种橙光磷光铱(Ⅲ)配合物的合成、晶体结构及光电性质研究[J]. 发光学报, 2013,34(7): 816-823
TAO Peng, ZHAO Qiang, JING Shu, WANG Jing-xia, LÜ Zhuang, CHEN Liu-qing, WANG Hua. Synthesis, Crystal Structure and Photophysical Properties of Iridium(Ⅲ) Complex Based on 4-methyl-2-phenylquinoline and Pentane-2,4-dione Ligands[J]. Chinese Journal of Luminescence, 2013,34(7): 816-823
陶鹏, 赵强, 景姝, 汪静霞, 吕壮, 陈柳青, 王华. 一种橙光磷光铱(Ⅲ)配合物的合成、晶体结构及光电性质研究[J]. 发光学报, 2013,34(7): 816-823 DOI: 10.3788/fgxb20133407.0816.
TAO Peng, ZHAO Qiang, JING Shu, WANG Jing-xia, LÜ Zhuang, CHEN Liu-qing, WANG Hua. Synthesis, Crystal Structure and Photophysical Properties of Iridium(Ⅲ) Complex Based on 4-methyl-2-phenylquinoline and Pentane-2,4-dione Ligands[J]. Chinese Journal of Luminescence, 2013,34(7): 816-823 DOI: 10.3788/fgxb20133407.0816.
采用二氯甲烷为溶剂
无水碳酸钾为缚酸剂
在25℃温和条件下
以2-苯基-4-甲基喹啉铱(III)氯桥二聚体[(4m2pq)
2
Ir(
-Cl)
2
Ir(4m2pq)
2
]和乙酰丙酮(Hacac)进行配位
反应合成了新型铱(Ⅲ)配合物[(4m2pq)
2
Ir(acac)]。通过核磁共振氢谱(
1
H NMR)、碳谱(
13
C NMR)、X射线单晶衍射等确定分子结构
利用紫外-可见吸收光谱、发射光谱对其光物理性质进行研究。结果表明:(4m2pq)
2
Ir(acac)的单晶结构属三斜晶系
空间群为
P
1;(4m2pq)
2
Ir(acac)在二氯甲烷溶液中呈橙光发射
发射峰为597 nm
磷光寿命0.33 s
量子效率达50.4%。以(4m2pq)
2
Ir(acac)为客体掺杂在CBP中
制备了结构为ITO/NPB(30 nm)/CBP:(4m2pq)
2
Ir(acac) (质量分数6%和 8%
20 nm)/BCP(10 nm)/Alq
3
(20 nm)/LiF(1 nm)/Al(150 nm)的橙色磷光有机电致发光器件
器件的最大亮度达到39 667 cd/m
2
发射峰位于597 nm
最大电流效率为14.2 cd/A
最大功率效率为8.1 lm/W。
A metal complex[(4m2pq)
2
Ir(acac)] was synthesized under mild condition of dichloromethane as solvent and potassium carbonate as deacid reagent at 25℃
where "4m2pq" is the ortho-C-deprotonated derived from 4-methyl-2-phenylquinoline and "acac" is derived from pentane-2
4-dione. The molecular structure of (4m2pq)
2
Ir(acac) was characterized by
1
H NMR spectral
13
C NMR spectrum and X-ray diffraction. UV-visible absorption spectrum
photoluminescence spectrum
luminescence quantum yields and phosphorescence lifetime were measured for studying photophysical properties of (4m2pq)
2
Ir(acac). The single crystal structure of (4m2pq)
2
Ir(acac) is in triclinic and space group
P
1. The orange phosphorescent emission with high fluorescence quantum efficiencies of 50.4% and lifetime of 0.33 s can be observed with peaks at 597 nm in degassed CH
2
Cl
2
solution at room temperature. Moreover
(4m2pq)
2
Ir(acac) was utilized as phosphorescence dopant in OLEDs with the structures of ITO/NPB (30 nm)/CBP:(4m2pq)
2
Ir(acac) (mass fraction of 6% and 8%
20 nm)/BCP (10 nm)/Alq
3
(20 nm)/LiF (1 nm)/Al. The device showed orange emission at 597 nm
maximum brightness of 39 667 cd/m
2
current efficiency of 14.2 cd/A
and power efficiency of 8.1 lm/W.
Baldo M A, O'Brien D F, Forrest S R, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698):151-154.[2] Lamansky S, Djurovich P, Thompson M E, et al. Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes[J]. J. Am. Chem. Soc., 2001, 123(18):4304-4312.[3] Zhao Q, Jiang C Y, Huang C H, et al. Synthesis and photophysical, electrochemical, and electrophosphorescent properties of a series of iridium(Ⅲ) -diketonate ligands[J]. Organometallics, 2006, 25(15):3631-3638.[4] Mou X, Wu Y Q, Huang W, et al. Phosphorescent platinum(Ⅱ) complexes containing different -diketonate ligands: synthesis, tunable excited-state properties, and their application in bioimaging[J]. J. Mater. Chem., 2011, 21(36):13951-13962.[5] Thomas K R J, Velusamy M, Tao Y T, et al. Efficient red-emitting cyclometalated iridium(Ⅲ) complexes containing lepidine-based ligands[J]. Inorg. Chem., 2005, 44(16):5677-5685.[6] He L, Ma D X, Qiu Y, et al. Control of intramolecular - stacking interaction in cationic iridium complexes via fluorination of pendant phenyl rings[J]. Inorg. Chem., 2012, 51(8):4502-4510.[7] Ding J Q, Gao J, Wang L X, et al. Highly efficient phosphorescent bis-cyclometalated iridium complexes based on quinoline ligands[J]. Synthetic Metals, 2005, 155(3):539-548.[8] Park Y S, Kang J W, Kim J J, et al. Efficient, color stable white organic light-emitting diode based on high energy level yellowish-green dopants[J]. Adv. Mater., 2008, 20(10):1957-1961.[9] D'Andrade B W, Holmes R J, Forrest S R, et al. Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer[J]. Adv. Mater., 2004, 16(7):624-628.[10] Gong X, Ma W, Heeger A J, et al. White electrophosphorescence from semiconducting polymer blends[J]. Adv. Mater., 2004, 16(7):615-619.[11] Kim T H, Lee H K, Kim J K, et al. White-light-emitting diodes based on iridium complexes via efficient energy transfer from a conjugated polymer[J]. Adv. Funct. Mater., 2006, 16(5):611-617.[12] Lamansky S, Djurovich P, Thompson M E, et al. Synthesis and characterization of phosphorescent cyclometalated iridium complexes[J]. Inorg. Chem., 2001, 40(7):1704-1711.[13] Yu G, Yin S W, Liu Y Q, et al. Structures, electronic states, and electroluminescent properties of a zinc(Ⅱ) 2-(2-hydroxyphenyl)benzothiazolate complex[J]. J. Am. Chem. Soc., 2003, 125(48):14816-14824.[14] Ma Y, Han W, Zhang F H, et al. White organic light-emitting diodes based on mixed doping emitting layer[J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 2011, 26(1):40-43 (in Chinese).[15] Velusamy M, Chen C H, Chou P T, et al. Cyclometalated platinum(Ⅱ) complexes of lepidine-based ligands as highly efficient electrophosphors[J]. Organometallics, 2010, 29(17):3912-3921.[16] Wang H, Xu B S, Liu X G, et al. A novel blue-light organic electroluminescence material derived from 8-hydroxyquinoline lithium[J]. Org. Electron., 2009, 10(5):918-924.[17] Gao Y H, Jing W L, Ding G Y, et al. Yellow organic light-emitting devices based on NPBX doped CzHQZn[J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 2011, 26(1):44-48 (in Chinese).
0
Views
139
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution