1.广东工业大学 物理与光电工程学院, 广东 广州 510006
扫 描 看 全 文
Hao HUANG, Wei-ren ZHAO, Yang LI, et al. Research Advances of Metal Halide Perovskites for Photocatalysis. [J]. Chinese Journal of Luminescence 41(9):1058-1081(2020)
Hao HUANG, Wei-ren ZHAO, Yang LI, et al. Research Advances of Metal Halide Perovskites for Photocatalysis. [J]. Chinese Journal of Luminescence 41(9):1058-1081(2020) DOI: 10.37188/fgxb20204109.1058.
发展绿色、环保、可持续的化学过程是当今环境、能源、化学学科面临的重大挑战。太阳能驱动光催化实现化学燃料制备、降解环境污染物、高附加值产物转化是解决目前面临的能源和环境问题的一条有效途径。近年来,金属卤化物钙钛矿材料作为一种新型高效的光催化材料受到了广泛关注。本文系统地阐述了金属卤化物钙钛矿材料在光催化析氢、光催化CO,2,还原和光催化有机物转化中的研究进展,讨论了金属卤化物钙钛矿的光催化作用机理和面临的困难,最后对金属卤化物钙钛矿光催化材料的发展方向进行了分析和展望。
The development of green, environmental, sustainable chemical processes is currently a huge challenge for environment, energy and chemistry. Solar-driven photocatalytic chemical fuels preparation, degradation of pollutants and transformation of high value-added products is an effective pathway to solve the current energy and environmental problems. In recent years, metal halide perovskites as an emerging and high-efficiency photocatalyst have gained widely interest. In this paper, we systematically reviewed the research advances of metal halide perovskites in photocatalytic hydrogen evolution, photocatalytic CO,2, reduction and photocatalytic organic transformation. The photocatalytic mechanism of metal halide perovskites and the key challenges in photocatalysis applications are described, and the further development of metal halide perovskites photocatalysis is analyzed and prospected.
金属卤化物钙钛矿光生载流子光催化析氢光催化CO2还原光催化有机物转化
metal halide perovskitesphotocarriersphotocatalytic hydrogen evolutionphotocatalytic CO2 reductionphotocatalytic organic transformation
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
TACHIBANA Y, VAYSSIERES L, DURRANT J R. Artificial photosynthesis for solar water-splitting[J]. Nat. Photonics, 2012, 6(8):511-518.
ZHANG G Q, SUN S R, JIANG W H, et al.. A novel perovskite SrTiO3-Ba2FeNbO6 solid solution for visible light photocatalytic hydrogen production[J]. Adv. Energy Mater., 2016, 7(2):1600932-1-7.
CHUNG K H, PARK Y K, KIM H, et al.. Effect of liquid phase plasma irradiation on production by photocatalytic water splitting over SrTiO3 photocatalysts[J]. ChemCatChem, 2019, 11(24):6451-6459.
WANG J J, TENG J, PU L Z, et al.. Double-hole-mediated coupling of anionic dopants in perovskite NaNbO3 for efficient solar water splitting[J]. Int. J. Quant. Chem., 2019, 119(14):e25930-1-11.
WANG X, HISATOMI T, WANG Z, et al.. Core-shell-structured LaTaON2 transformed from LaKNaTaO5 plates for enhanced photocatalytic H2 evolution[J]. Angew. Chem. Int. Ed., 2019, 58(31):10666-10670.
LIU Y L, ZHANG M F, TUNG C H, et al.. TiO2 photocatalytic cyclization reactions for the syntheses of aryltetralones[J]. ACS Catal., 2016, 6(12):8389-8394.
ONG C B, NG L Y, MOHAMMAD A W. A review of ZnO nanoparticles as solar photocatalysts:synthesis, mechanisms and applications[J]. Renew. Sustain. Energy Rev., 2018, 81:536-551.
SU Y, LI H F, MA H B,et al.. Controlling surface termination and facet orientation in Cu2O nanoparticles for high photocatalytic activity:a combined experimental and density functional theory study[J]. ACS Appl. Mater. Interfaces, 2017, 9(9):8100-8106.
YANG J H, YAN H J, WANG X L, et al.. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production[J]. J. Catal., 2012, 290:151-157.
ALOTAIBI B, FAN S Z, WANG D F, et al.. Wafer-level artificial photosynthesis for CO2 reduction into CH4 and CO using GaN nanowires[J]. ACS Catal., 2015, 5(9):5342-5348.
YU S, FAN X B, WANG X, et al.. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots[J]. Nat. Commun., 2018, 9(1):4009-1-10.
XIANG Q J, YU J G, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. J. Phys. Chem. C, 2011, 115(15):7355-7363.
HE R A, CAO S W, ZHOU P, et al.. Recent advances in visible light Bi-based photocatalysts[J]. Chin. J. Catal., 2014, 35(7):989-1007.
WEN J Q, XIE J, CHEN X B, et al.. A review on g-C3N4-based photocatalysts[J]. Appl. Surf. Sci., 2017, 391:72-123.
GE M Z, LI Q S, CAO C Y, et al.. One-dimensional TiO2 nanotube photocatalysts for solar water splitting[J]. Adv Sci., 2017, 4(1):1600152-1-31.
ZHONG Q X, CAO M H, XU Y F, et al.. L-type ligand-assisted acid-free synthesis of CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield and high stability[J]. Nano Lett., 2019, 19(6):4151-4157.
WU Y, WEI C T, LI X M, et al.. In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield[J]. ACS Energy Lett., 2018, 3(9):2030-2037.
PAN J, SHANG Y Q, YIN J, et al.. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. J. Am. Chem. Soc., 2018, 140(2):562-565.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett., 2015, 15(6):3692-3696.
LIN C D, LI S Y, ZHANG W S, et al.. Effect of bromine substitution on the ion migration and optical absorption in MAPbI3 perovskite solar cells:the first-principles study[J]. ACS Appl. Energy Mater., 2018, 1(3):1374-1380.
ZHANG F Y, YANG B, LI Y J, et al.. Extra long electron-hole diffusion lengths in CH3NH3PbI3-xClx perovskite single crystals[J]. J. Mater. Chem. C, 2017, 5(33):8431-8435.
ZHUMEKENOV A A, SAIDAMINOV M I, HAQUE M A, et al.. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length[J]. ACS Energy Lett., 2016, 1(1):32-37.
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.
SONG J Z, LI J H, LI X M, et al.. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Adv. Mater., 2015, 27(44):7162-7167.
WANG Y, LI X M, SONG J Z, et al.. All-inorganic colloidal perovskite quantum dots:a new class of lasing materials with favorable characteristics[J]. Adv. Mater., 2015, 27(44):7101-7108.
LI X M, YU D J, CAO F, et al.. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability[J]. Adv. Funct. Mater., 2016, 26(32):5903-5912.
SAHLI F, WERNER J, KAMINO B A, et al.. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nat. Mater., 2018, 17(9):820-826.
PARK N G. Research direction toward scalable, stable, and high efficiency perovskite solar cells[J]. Adv. Energy Mater., 2020, 10(13):1903106.
GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nat. Photonics, 2014, 8(7):506-514.
STRANKS S D, SNAITH H J. Metal-halide perovskites for photovoltaic and light-emitting devices[J]. Nat. Nanotechnol., 2015, 10(5):391-402.
CHENG Z Y, LIN J. Layered organic-inorganic hybrid perovskites:structure, optical properties, film preparation, patterning and templating engineering[J]. CrystEngComm, 2010, 12(10):2646-2662.
SUBHANI W S, WANG K, DU M Y, et al.. Goldschmidt-rule-deviated perovskite CsPbIBr2 by barium substitution for efficient solar cells[J]. Nano Energy, 2019, 61:165-172.
KIESLICH G, SUN S J, CHEETHAM A K. Solid-state principles applied to organic-inorganic perovskites:new tricks for an old dog[J]. Chem. Sci., 2014, 5(12):4712-4715.
KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364):745-750.
TRAVIS W, GLOVER E N K, BRONSTEIN H, et al.. On the application of the tolerance factor to inorganic and hybrid halide perovskites:a revised system[J]. Chem. Sci., 2016, 7(7):4548-4556.
WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chem. Soc. Rev., 2019, 48(1):310-350.
STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg. Chem., 2013, 52(15):9019-9038.
QUARTI C, MOSCONI E, BALL J M, et al.. Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition:implications for perovskite solar cells[J]. Energy Environ. Sci., 2016, 9(1):155-163.
OSTERLOH F E. Photocatalysis versus photosynthesis:a sensitivity analysis of devices for solar energy conversion and chemical transformations[J]. ACS Energy Lett., 2017, 2(2):445-453.
ZHOU H L, QU Y Q, ZEID T, et al.. Towards highly efficient photocatalysts using semiconductor nanoarchitectures[J]. Energy Environ. Sci., 2012, 5(5):6732-6743.
FENG J, XIAO B. Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3(X=I and Br) phases predicted from HSE06[J]. J. Phys. Chem. Lett., 2014, 5(7):1278-1282.
MOSCONI E, UMARI P, DE ANGELIS F. Electronic and optical properties of MAPbX3 perovskites(X=I, Br, Cl):a unified DFT and GW[J]. Phys. Chem. Chem. Phys., 2016, 18(39):27158-27164.
IMRAN M, CALIGIURI V, WANG M J, et al.. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals[J]. J. Am. Chem. Soc., 2018, 140(7):2656-2664.
MALGRAS V, TOMINAKA S, RYAN J W, et al.. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica[J]. J. Am. Chem. Soc., 2016, 138(42):13874-13881.
CHEN J, DONG C W, IDRISS H, et al.. Metal halide perovskites for solar-to-chemical fuel conversion[J]. Adv. Energy Mater., 2020, 10(13):1902433-1-15.
CAO X R, TIAN G H, CHEN Y J, et al.. Hierarchical composites of TiO2 nanowire arrays on reduced graphene oxide nanosheets with enhanced photocatalytic hydrogen evolution performance[J]. J. Mater. Chem. A, 2014, 2(12):4366-4374.
SASIKALA R, SHIROLE A, SUDARSAN V, et al.. Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route:photocatalytic activity for hydrogen generation[J]. Int. J. Hydrog. Energy, 2009, 34(9):3621-3630.
HAN W Y, ZHU W P, ZHANG P Y, et al.. Photocatalytic degradation of phenols in aqueous solution under irradiation of 254 and 185 nm UV light[J]. Catal. Today, 2004, 90(3-4):319-324.
OSTERLOH F E. Inorganic materials as catalysts for photochemical splitting of water[J]. Chem. Mater., 2008, 20(1):35-54.
YIN W J, SHI T T, YAN Y F. Superior photovoltaic properties of lead halide perovskites:insights from first-principles theory[J]. J. Phys. Chem. C, 2015, 119(10):5253-5264.
PARK G D, LEE C W, NAM K T. Recent advances and perspectives of halide perovskite photocatalyst[J]. Curr. Opin. Electrochem., 2018, 11:98-104.
KOH T M, FU K W, FANG Y N, et al.. Formamidinium-containing metal-halide:an alternative material for near-IR absorption perovskite solar cells[J]. J. Phys. Chem. C, 2014, 118(30):16458-16462.
AKKERMAN Q A, RAINÒ G, KOVALENKO M V, et al.. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nat. Mater., 2018, 17(5):394-405.
TONG J H, SONG Z N, KIM D H, et al.. Carrier lifetimes of >1μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells[J]. Science, 2019, 364(6439):475-479.
CHOUHAN A S, JASTI N P, HADKE S, et al.. Large grained and high charge carrier lifetime CH3NH3PbI3 thin-films:implications for perovskite solar cells[J]. Curr. Appl. Phys., 2017, 17(10):1335-1340.
DONG Q F, FANG Y J, SHAO Y C, et al.. Electron-hole diffusion lengths >175μm in solution-grown CH 3NH3PbI3 single crystals[J]. Science, 2015, 347(6225):967-970.
CHEN J S, LIU D Z, AL-MARRI M J, et al.. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application[J]. Sci. China Mater., 2016, 59(9):719-727.
ARISTIDOU N, EAMES C, SANCHEZ-MOLINA I, et al.. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells[J]. Nat. Commun., 2017, 8:15218.
HUANG S Q, LI Z C, WANG B, et al.. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination[J]. ACS Appl. Mater. Interfaces, 2017, 9(8):7249-7258.
CHRISTIANS J A, MIRANDA HERRERA P A, KAMAT P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. J. Am. Chem. Soc., 2015, 137(4):1530-1538.
MOSCONI E, AZPIROZ J M, DE ANGELIS F. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water[J]. Chem. Mater., 2015, 27(13):4885-4892.
LEGUY A M A, HU Y H, CAMPOY-QUILES M, et al.. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells[J]. Chem. Mater., 2015, 27(9):3397-3407.
BI C H, WANG S X, LI Q, et al.. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission[J]. J. Phys. Chem. Lett., 2019, 10(5):943-952.
GUAN H L, ZHAO S Y, WANG H X, et al.. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag-In-Zn-S for high-CRI white light-emitting diodes[J]. Nano Energy, 2020, 67:104279.
YANG D D, LI X M, ZHOU W H, et al.. CsPbBr3 quantum dots 2.0:benzenesulfonic acid equivalent ligand awakens complete purification[J]. Adv. Mater., 2019, 31(30):1900767-1-8.
PARK S, CHANG W J, LEE C W, et al.. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution[J]. Nat. Energy, 2016, 2(1):16185-1-19.
XIAO M, HAO M M, LYU M Q, et al.. Surface ligands stabilized lead halide perovskite quantum dot photocatalyst for visible light-driven hydrogen generation[J]. Adv. Funct. Mater., 2019, 29(48):1905683.
WU Y Q, WANG P, ZHU X L, et al.. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution[J]. Adv. Mater., 2018, 30(7):1704342.
WANG X M, WANG H, ZHANG H F, et al.. Dynamic interaction between methylammonium lead iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting[J]. ACS Energy Lett., 2018, 3(5):1159-1164.
WANG F, LIU X Y, ZHANG Z G, et al.. A noble-metal-free MoS2 nanosheet-coupled MAPbI3 photocatalyst for efficient and stable visible-light-driven hydrogen evolution[J]. Chem. Commun., 2020, 56(22):3281-3284.
OU M, TU W W, YIN S M, et al.. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction[J]. Angew. Chem. Int. Ed., 2018, 57(41):13570-13574.
KONG Z C, LIAO J F, DONG Y J, et al.. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction[J]. ACS Energy Lett., 2018, 3(11):2656-2662.
XU Y F, YANG M Z, CHEN B X, et al.. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction[J]. J. Am. Chem. Soc., 2017, 139(16):5660-5663.
XU Y F, WANG X D, LIAO J F, et al.. Amorphous-TiO2-encapsulated CsPbBr3 nanocrystal composite photocatalyst with enhanced charge separation and CO2 fixation[J]. Adv. Mater. Interfaces, 2018, 5(22):1801015.
WANG L, XIAO H, CHENG T, et al.. Pb-activated amine-assisted photocatalytic hydrogen evolution reaction on organic-inorganic perovskites[J]. J. Am. Chem. Soc., 2018, 140(6):1994-1997.
AGMON N. The Grotthuss mechanism[J]. Chem. Phys. Lett., 1995, 244(5-6):456-462.
CHEN X B, SHEN S H, GUO L J, et al.. Semiconductor-based photocatalytic hydrogen generation[J]. Chem. Rev., 2010, 110(11):6503-6570.
WANG T, YUE D T, LI X, et al.. Lead-free double perovskite Cs2AgBiBr6/RGO composite for efficient visible light photocatalytic H2 evolution[J]. Appl. Catal. B:Environ., 2020, 268:118399-1-7.
GUO Y M, LIU G N, LI Z X, et al.. Stable lead-free (CH3NH3)3Bi2I9 perovskite for photocatalytic hydrogen generation[J]. ACS Sustainable Chem. Eng., 2019, 7(17):15080-15085.
WANG H, WANG X M, CHEN R T, et al.. Promoting photocatalytic H2 evolution on organic-inorganic hybrid perovskite nanocrystals by simultaneous dual-charge transportation modulation[J]. ACS Energy Lett., 2019, 4(1):40-47.
ZHAO Z J, WU J J, ZHENG Y Z, et al.. Ni3C-decorated MAPbI3 as visible-light photocatalyst for H2 evolution from HI splitting[J]. ACS Catal., 2019, 9(9):8144-8152.
LI R, LI X T, WU J J, et al.. Few-layer black phosphorus-on-MAPbI3 for superb visible-light photocatalytic hydrogen evolution from HI splitting[J]. Appl. Catal. B:Environ., 2019, 259:118075.
HOFFMAN J B, SCHLEPER A L, KAMAT P V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-x through halide exchange[J]. J. Am. Chem. Soc., 2016, 138(27):8603-8611.
KIM M C, KIM B J, SON D Y, et al.. Observation of enhanced hole extraction in Br concentration gradient perovskite materials[J]. Nano Lett., 2016, 16(9):5756-5763.
WU Y Q, WANG P, GUAN Z H, et al.. Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH3NH3PbBr3-xIx achieved by bandgap funneling of charge carriers[J]. ACS Catal., 2018, 8(11):10349-10357.
GUAN Z H, WU Y Q, WANG P, et al.. Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light[J]. Appl. Catal. B:Environ., 2019, 245:522-527.
HUANG H, CHEN B K, WANG Z G, et al.. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices[J]. Chem. Sci., 2016, 7(9):5699-5703.
ZHAO Z J, WU J J, ZHENG Y Z, et al.. Stable hybrid perovskite MAPb(I1-xBrx)3 for photocatalytic hydrogen evolution[J]. Appl. Catal. B:Environ., 2019, 253:41-48.
SYZGANTSEVA O A, SALIBA M, GRÄTZEL M, et al.. Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping[J]. J. Phys. Chem. Lett., 2017, 8(6):1191-1196.
YUE D T, ZHANG T Y, WANG T, et al.. Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H2 generation[J]. EcoMat, 2020, 2(1):e12015-1-5.
SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide[J]. Chem. Rev., 2007, 107(6):2365-2387.
KANHERE P, CHEN Z. A review on visible light active perovskite-based photocatalysts[J]. Molecules, 2014, 19(12):19995-20022.
SCHNEIDER J, JIA H F, MUCKERMAN J T, et al.. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts[J]. Chem. Soc. Rev., 2012, 41(6):2036-2051.
LI X, YU J G, JARONIEC M, et al.. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chem. Rev., 2019, 119(6):3962-4179.
HOU J G, CAO S Y, WU Y Z, et al..Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction[J]. Chem. Eur. J., 2017, 23(40):9481-9485.
XU Y F, YANG M Z, CHEN H Y, et al.. Enhanced solar-driven gaseous CO2 conversion by CsPbBr3 nanocrystal/Pd nanosheet schottky-junction photocatalyst[J]. ACS Appl. Energy Mater., 2018, 1(9):5083-5089.
PAN A Z, MA X Q, HUANG S Y, et al.. CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction[J]. J. Phys. Chem. Lett., 2019, 10(21):6590-6597.
CHEN Z J, HU Y G, WANG J, et al.. Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes[J]. Chem. Mater., 2020, 32(4):1517-1525.
WAN S P, OU M, ZHONG Q, et al.. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction[J]. Chem. Eur. J., 2019, 358:1287-1295.
WU L Y, MU Y F, GUO X X, et al.. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction[J]. Angew. Chem. Int. Ed., 2019, 58(28):9491-9495.
GUO S H, ZHOU J, ZHAO X, et al.. Enhanced CO2 photoreduction via tuning halides in perovskites[J]. J. Catal., 2019, 369:201-208.
MU Y F, ZHANG W, GUO X X, et al.. Water-tolerant lead halide perovskite nanocrystals as efficient photocatalysts for visible-light-driven CO2 reduction in pure water[J]. ChemSusChem, 2019, 12(21):4769-4774.
ZHOU L, XU Y F, CHEN B X, et al.. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals[J]. Small, 2018, 14(11):e1703762-1-7.
WANG X D, HUANG Y H, LIAO J F, et al.. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer[J]. J. Am. Chem. Soc., 2019, 141(34):13434-13441.
LU C, ITANZE D S, ARAGON A G, et al.. Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity[J]. Nanoscale, 2020, 12(5):2987-2991.
CHEN K, DENG X H, DODEKATOS G, et al.. Photocatalytic polymerization of 3, 4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots[J]. J. Am. Chem. Soc., 2017, 139(35):12267-12273.
WONG Y C, DE ANDREW NG J, TAN Z K. Perovskite-initiated photopolymerization for singly dispersed luminescent nanocomposites[J]. Adv. Mater., 2018, 30(21):1800774-1-6.
WU W B, WONG Y C, TAN Z K, et al.. Photo-induced thiol coupling and C-H activation using nanocrystalline lead-halide perovskite catalysts[J]. Catal. Sci. Technol., 2018, 8(16):4257-4263.
HUANG H W, YUAN H F, JANSSEN K P F, et al.. Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic-inorganic perovskite materials[J]. ACS Energy Lett., 2018, 3(4):755-759.
SCHVNEMANN S, VAN GASTEL M, TVYSVZ H. A CsPbBr3/TiO2 composite for visible-light-driven photocatalytic benzyl alcohol oxidation[J]. ChemSusChem, 2018, 11(13):2057-2061.
ZHU X L, LIN Y X, SUN Y, et al.. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes[J]. J. Am. Chem. Soc., 2019, 141(2):733-738.
ZHU X L, LIN Y X, MARTIN J S, et al.. Lead halide perovskites for photocatalytic organic synthesis[J]. Nat. Commun., 2019, 10(1):2843.
DAI Y T, POIDEVIN C, OCHOA-HERNÁNDEZ C, et al.. A supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic C-H bond activation[J]. Angew. Chem. Int. Ed., 2020, 59(14):5788-5796.
GAO G, XI Q Y, ZHOU H, et al.. Novel inorganic perovskite quantum dots for photocatalysis[J]. Nanoscale, 2017, 9(33):12032-12038.
QIAN X X, CHEN Z, YANG X R, et al.. Perovskite cesium lead bromide quantum dots:a new efficient photocatalyst for degrading antibiotic residues in organic system[J]. J. Clean. Prod., 2020, 249:119335.
FENG X B, JU H M, SONG T H, et al.. Highly efficient photocatalytic degradation performance of CsPb(Br1-xClx)3-Au nanoheterostructures[J]. ACS Sustainable Chem. Eng., 2019, 7(5):5152-5156.
ZHANG W N, ZHAO Q G, WANG X H, et al.. Lead-free organic-inorganic hybrid perovskite heterojunction composites for photocatalytic applications[J]. Catal. Sci. Technol., 2017, 7(13):2753-2762.
ZHAO Y Y, WANG Y B, LIANG X H,et al.. Enhanced photocatalytic activity of Ag-CsPbBr3/CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA[J]. Appl. Catal. B:Environ., 2019, 247:57-69.
0
Views
138
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution