浏览全部资源
扫码关注微信
哈尔滨工业大学 化工与化学学院, 黑龙江 哈尔滨 150001
Published:2020-9,
Received:17 June 2020,
Accepted:3 July 2020
扫 描 看 全 文
Xin WANG, Xiao-jun HAN, Guan-ying CHEN. Time-resolved Imaging Using Lanthanide-doped Nanomaterials. [J]. Chinese Journal of Luminescence 41(9):1045-1057(2020)
Xin WANG, Xiao-jun HAN, Guan-ying CHEN. Time-resolved Imaging Using Lanthanide-doped Nanomaterials. [J]. Chinese Journal of Luminescence 41(9):1045-1057(2020) DOI: 10.37188/fgxb20204109.1045.
时间分辨成像是一种在时域层面区分荧光信息的成像技术。该技术能有效地消除自体荧光和光散射的背景干扰,从而极大地提高成像信噪比和灵敏度;同时该成像技术不依赖于生物组织的厚度,适用于生物活体多通道定量检测。稀土发光纳米材料具有独特的光学性质,不仅在生物窗口内存在多个近红外窄带辐射,而且具备长荧光寿命(微秒-毫秒范围,长于生物内源性荧光团3个数量级以上),适用于时间分辨生物成像。特别是稀土纳米晶可以通过调节纳米结构和组分实现其荧光寿命的人工精确调控,从而制备出系列寿命编码型探针应用于活体时间域分辨成像。本文主要阐述了稀土发光纳米材料荧光寿命的普适性调控策略,系统地综述了该材料在时间分辨成像中的最新研究进展,并展望了其未来发展趋势。
Time-resolved imaging is an emerging type of imaging technique which can resolve long lifetime luminescence signal against short lifetime background signal in the time domain. The suppression of autofluorescence and scattering background endows this imaging technique with high signal-to-noise ratios and sensitivities. Lanthanide-doped nanomaterials have unique optical properties that make them suitable to serve as
τ
-dots for time-resolved imaging
such as being able to emit a multitude of narrow-band emissions in biological windows
being photostable under high laser irradiance
and having ultralong luminescence lifetimes in the μs-ms range about more than three orders of magnitude longer than the ones of biological endogenous fluorophores. Importantly
manipulation of the nanostructure and composition of lanthanide doped nanomaterials can result in a precise control over the luminescence lifetime
thus producing a set of lifetime-encoded biolabels for high-throughput multichannel detections. This review presents the general strategies utilized to regulate the luminescence lifetime of lanthanide-doped nanomaterials
highlights the most recent advances of utilizing them for time resolved imaging
and casts a look at their future developments.
稀土发光纳米材料寿命时间门成像寿命编码成像
lanthanide-doped nanomaterialslifetimetime-gated imaginglifetime-encoded imaging
HONG G S, ANTARIS A L, DAI H J. Near-infrared fluorophores for biomedical imaging[J]. Nat. Biomed. Eng., 2017, 1(1):0010.
SMITH B R, GAMBHIR S S. Nanomaterials for in vivo imaging[J]. Chem. Rev., 2017, 117(3):901-986.
LIU L, WANG S F, ZHAO B Z, et al.. Er3+ sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(25):7518-7522.
CHEN G Y, ÅGREN H, OHULCHANSKYY T Y, et al.. Light upconverting core-shell nanostructures:nanophotonic control for emerging applications[J]. Chem. Soc. Rev., 2015, 44(6):1680-1713.
NACZYNSKI D J, TAN M C, ZEVON M, et al.. Rare-earth-doped biological composites as in vivo shortwave infrared reporters[J]. Nat. Commun., 2013, 4:2199-1-21.
HINES M A, SCHOLES G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission:observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater., 2003, 15(21):1844-1849.
FRANKE D, HARRIS D K, CHEN O, et al.. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared[J]. Nat. Commun., 2016, 7:12749-1-9.
WANG X, YAKOVLIEV A, OHULCHANSKYY T Y, et al.. Efficient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging[J]. Adv. Opt. Mater., 2018, 6(20):1800690-1-7.
LIU B, LI C X, YANG P P, et al.. 808-nm-light-excited lanthanide-doped nanoparticles:rational design, luminescence control and theranostic applications[J]. Adv. Mater., 2017, 29(18):1605434-1-24.
YANG B, CHEN J S, YANG S Q, et al.. Lead-free silver-bismuth halide double perovskite nanocrystals[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(19):5359-5363.
HONG G S, DIAO S, ANTARIS A L, et al.. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J]. Chem. Rev., 2015, 115(19):10816-10906.
ANTARIS A L, CHEN H, CHENG K,et al.. A small-molecule dye for NIR-Ⅱ imaging[J]. Nat. Mater., 2016, 15(2):235-242.
TAO Z M, HONG G S, SHINJI C, et al.. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm[J]. Angew. Chem. Int. Ed. Engl., 2013, 52(49):13002-13006.
ZEBIBULA A, ALIFU N, XIA L Q, et al.. Ultrastable and biocompatible NIR-Ⅱ quantum dots for functional bioimaging[J]. Adv. Funct. Mater., 2018, 28(9):1703451.
CAO C, XUE M, ZHU X J, et al.. Energy transfer highway in Nd3+-sensitized nanoparticles for efficient near-infrared bioimaging[J]. ACS Appl. Mater. Interfaces, 2017, 9(22):18540-18548.
MA Q Q, WANG J, LI Z H, et al.. Recent progress in time-resolved biosensing and bioimaging based on lanthanide-doped nanoparticles[J]. Small, 2019, 15(32):1804969-1-22.
WANG J, MA Q Q, LIU H Y, et al.. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition[J]. Anal. Chem., 2017, 89(23):12764-12770.
CHEN T, HONG R, MAGDA D, et al.. Time gated luminescence imaging of immunolabeled human tissues[J]. Anal. Chem., 2017, 89(23):12713-12719.
ZHOU L, FAN Y, WANG R, et al.. High-capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(39):12824-12829.
FAN Y, WANG P Y, LU Y Q, et al.. Lifetime-engineered NIR-Ⅱ nanoparticles unlock multiplexed in vivo imaging[J]. Nat. Nanotechnol., 2018, 13(10):941-946.
DEL ROSAL B, ORTGIES D H, FERNÁNDEZ N, et al.. Overcoming autofluorescence:long-lifetime infrared nanoparticles for time-gated in vivo imaging[J]. Adv. Mater., 2016, 28(46):10188-10193.
JOO J, LIU X Y, KOTAMRAJU V R, et al.. Gated luminescence imaging of silicon nanoparticles[J]. ACS Nano, 2015, 9(6):6233-6241.
ZHAO M Y, LI B H, WU Y F, et al.. A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-Ⅱ luminescence-lifetimein situ imaging of hepatocellular carcinoma[J]. Adv. Mater., 2020, 32(28):2001172.
LI H, TAN M L, WANG X, et al.. Temporal multiplexed in vivo upconversion imaging[J]. J. Am. Chem. Soc., 2020, 142(4):2023-2030.
FAN Y, ZHANG F. A new generation of NIR-Ⅱ probes:lanthanide-based nanocrystals for bioimaging and biosensing[J]. Adv. Opt. Mater., 2019, 7(7):1801417.
TAN M L, DEL ROSAL B, ZHANG Y Q, et al.. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window[J]. Nanoscale, 2018, 10(37):17771-17780.
ORTGIES D H, TAN M L, XIMENDES E C, et al.. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging[J]. ACS Nano, 2018, 12(5):4362-4368.
GARGAS D J, CHAN E M, OSTROWSKI A D, et al.. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging[J]. Nat. Nanotechnol., 2014, 9(4):300-305.
LU Y Q, LU J, ZHAO J B, et al.. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays[J]. Nat. Commun., 2014, 5:3741.
FISCHER S, BRONSTEIN N D, SWABECK J K, et al.. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals[J]. Nano Lett., 2016, 16(11):7241-7247.
LU Y Q, ZHAO J B, ZHANG R, et al.. Tunable lifetime multiplexing using luminescent nanocrystals[J]. Nat. Photonics, 2014, 8(1):32-36.
ZHAO J B, LU Z D, YIN Y D, et al.. Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals:role of nanocrystal size[J]. Nanoscale, 2013, 5(3):944-952.
TU D T, LIU L Q, JU Q, et al.. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals[J]. Angew. Chem. Int. Ed. Engl., 2011, 50(28):6306-6310.
SHAO W, CHEN G Y, KUZMIN A, et al.. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window[J]. J. Am. Chem. Soc., 2016, 138(50):16192-16195.
SONG B, YE Z Q, YANG Y J, et al.. Background-free in-vivo imaging of vitamin C using time-gateable responsive probe[J]. Sci. Rep., 2015, 5:14194-1-10.
ZHENG X L, ZHU X J, LU Y Q, et al.. High-contrast visualization of upconversion luminescence in mice using time-gating approach[J]. Anal. Chem., 2016, 88(7):3449-3454.
GU Y Y, GUO Z Y, YUAN W, et al.. High-sensitivity imaging of time-domain near-infrared light transducer[J]. Nat. Photonics, 2019, 13(8):525-531.
CHENG S M, LIU Q Y, ZHOU X B, et al.. Reversible ratiometric probe combined with the time-gated method for accurate in vivo gastrointestinal pH sensing[J]. ACS Appl. Mater. Interfaces, 2020, 12(23):25557-25564.
QIU X C, ZHOU Q W, ZHU X J, et al.. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique[J]. Nat. Commun., 2020, 11(1):4.
BRENNECKE B, WANG Q H, ZHANG Q Y, et al.. An activatable lanthanide luminescent probe for time-gated detection of nitroreductase in live bacteria[J]. Angew. Chem. Int. Ed. Engl., 2020, 59(22):8512-8516.
DAI Z C, TIAN L, SONG B, et al.. Development of a novel lysosome-targetable time-gated luminescence probe for ratiometric and luminescence lifetime detection of nitric oxide in vivo[J]. Chem. Sci., 2017, 8(3):1969-1976.
MASSEY M, ANCONA M G, MEDINTZ I L, et al.. Time-gated DNA photonic wires with Förster resonance energy transfer cascades initiated by a luminescent terbium donor[J]. ACS Photonics, 2015, 2(5):639-652.
VUOJOLA J, SYRJÄNPÄÄ M, LAMMINMÄKI U, et al.. Genetically encoded protease substrate based on lanthanide-binding peptide for time-gated fluorescence detection[J]. Anal. Chem., 2013, 85(3):1367-1373.
KONG M Y, GU Y Y, LIU Y L, et al.. Luminescence lifetime-based in vivo detection with responsive rare earth-dye nanocomposite[J]. Small, 2019, 15(46):1904487.
NING Y Y, CHENG S M, WANG J X, et al.. Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe[J]. Chem. Sci., 2019, 10(15):4227-4235.
ZHENG K Z, LOH K Y, WANG Y, et al.. Recent advances in upconversion nanocrystals:expanding the kaleidoscopic toolbox for emerging applications[J]. Nano Today, 2019, 29:100797.
0
Views
328
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution