浏览全部资源
扫码关注微信
1.西安电子科技大学 分子与神经影像教育部工程中心, 智能传感交叉前沿研究中心, 生命科学技术学院, 机电工程学院, 陕西 西安 710126
2.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室, 吉林 长春 130022
Published:2020-9,
Received:10 June 2020,
Accepted:28 June 2020
扫 描 看 全 文
Rui-chan LYU, Yan-xing WANG, Fan YANG, et al. Discrete Dipole Approximation Assisted Metal Modulation of Rare Earth Fluorescence and Application. [J]. Chinese Journal of Luminescence 41(9):1030-1044(2020)
Rui-chan LYU, Yan-xing WANG, Fan YANG, et al. Discrete Dipole Approximation Assisted Metal Modulation of Rare Earth Fluorescence and Application. [J]. Chinese Journal of Luminescence 41(9):1030-1044(2020) DOI: 10.37188/fgxb20204109.1030.
上转换荧光材料由于具有独特的反斯托克斯发射、激发光成像深、自发荧光低、物理化学性质稳定等特点,因此作为影像药剂被广泛研究,在生物医疗领域的应用也得到了不断的发展,但较低的发光效率制约了其发展。金属纳米粒子具有独特的局域表面等离子共振效应,可以有效地增强上转换荧光。本文主要综述离散偶极近似仿真对金属调制荧光的理论指导、实验验证和生物应用。离散偶极近似仿真能够计算纳米粒子电磁特性,可以预测等离子共振峰的位置和强度,从而指导设计金属增强稀土荧光的结构,并对其荧光性能进行测试验证。综述中共涉及了六种不同的稀土-金属复合结构,都获得了金属增强荧光的效果,并实现了其在生物成像和治疗领域的应用。
Up-conversion luminescence material has been widely studied as the imaging agent due to its unique characteristics of anti-Stokes emission
deep excitation light imaging
low background self-fluorescence
and stable physical/chemical property
thus its application has been developed gradually. However
the low efficiency restricts the application in the biomedical field of up-conversion luminescent materials. Metal nanoparticles have unique local surface plasmon resonance and can effectively enhance fluorescence intensity. In this paper
discrete dipole approximation simulation of metal modulation to rare earth from theoretical guidance and experimental verification to biological use were reviewed. The electromagnetic characteristics of the composite can be obtained by the simulation
and plasma resonance peak(position and intensity) can be predicted
in order to guide the design and synthesis with the final luminescence test validation. In this review
six typical different rare earth-metal composites were designed and synthesized with enhanced fluorescence effect
and the application in biological imaging and therapy field was implemented.
上转换荧光表面等离子共振近红外激光
up-conversion luminescencesurface plasmon resonancenear infrared laser
WEISSLEDER R, PITTET M J. Imaging in the era of molecular oncology[J]. Nature, 2008, 452(7187):580-589.
CUI Q, CHEN Z Y, LIU Q, et al.. Visible continuum pulses based on enhanced dispersive wave generation for endogenous fluorescence imaging[J]. Biomed. Opt. Express, 2017, 8(9):4026-4036.
ZHOU L J, ZHENG X P, GU Z J, et al.. Mesoporous NaYbF4@NaGdF4 core-shell up-conversion nanoparticles for targeted drug delivery and multimodal imaging[J]. Biomaterials, 2014, 35(26):7666-7678.
BAO L, LIU C, ZHANG Z L, et al.. Photoluminescence-tunable carbon nanodots:surface-state energy-gap tuning[J]. Adv. Mater., 2015, 27(10):1663-1667.
SHEN J, CHEN G, OHULCHANSKYY T Y, et al.. Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4:Yb, Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation[J]. Small, 2013, 9(19):3213-3217.
IDRIS N M, GNANASAMMANDHAN M K, ZHANG J, et al.. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J]. Nat. Med., 2012, 18(10):1580-1585.
LIU G Y, ZHANG S C, SHI Y H, et al.. "Wax-sealed" theranostic nanoplatform for enhanced afterglow imaging-guided photothermally triggered photodynamic therapy[J]. Adv. Funct. Mater., 2018, 28(42):1804317-1-11.
QI J, SUN C W, ZEBIBULA A,et al.. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region[J]. Adv. Mater., 2018, 30(12):1706856.
YANG D M, MA P A, HOU Z Y, et al.. ChemInform abstract:current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery[J]. ChemInform, 2015, 46(21):2343-2389.
LIU B, LI C X, YANG P P, et al.. 808-nm-light-excited lanthanide-doped nanoparticles:rational design, luminescence control and theranostic applications[J]. Adv. Mater., 2017, 29(18):1605434.
FENG Y S, WU Y N, ZUO J, et al.. Assembly of upconversion nanophotosensitizer in vivo to achieve scatheless real-time imaging and selective photodynamic therapy[J]. Biomaterials, 2019, 201:33-41.
HOU Z Y, DENG K R, WANG M F, et al.. Hydrogenated titanium oxide decorated upconversion nanoparticles:facile laser modified synthesis and 808 nm near-infrared light triggered phototherapy[J]. Chem. Mater., 2019, 31(3):774-784.
HUANG Q, ZHANG S H, ZHANG H, et al.. Boosting the radiosensitizing and photothermal performance of Cu2-xSe nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer[J]. ACS Nano, 2019, 13(2):1342-1353.
CHEN S, WEITEMIER A Z, ZENG X, et al.. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 2018, 359(6376):679-684.
PLISS A, LEVCHENKO S M, LIU L X, et al.. Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging[J]. Nat. Commun., 2019, 10(1):455.
WANG W N, HUANG C X, ZHANG C Y, et al.. Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light[J]. Appl. Catal. B Environ., 2018, 224:854-862.
DAY J, SENTHILARASU S, MALLICK T K. Improving spectral modification for applications in solar cells:a review[J]. Renew. Energy, 2019, 132:186-205.
SUN X K, SUN J, DONG B, et al.. Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites[J]. Biomaterials, 2019, 201:42-52.
VETRONE F, NACCACHE R, MAHALINGAM V, et al.. The active-core/active-shell approach:a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J]. Adv. Funct. Mater., 2009, 19(18):2924-2929.
GARGAS D J, CHAN E M, OSTROWSKI A D, et al.. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging[J]. Nat. Nanotechnol., 2014, 9(4):300-305.
JOHNSON N J J, HE S, DIAO S, et al.. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals[J]. J. Am. Chem. Soc., 2017, 139(8):3275-3282.
GARFIELD D J, BORYS N J, HAMED S M, et al.. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission[J]. Nat. Photonics, 2018, 12(7):402-407.
YIN Z, LI H, XU W, et al.. Local field modulation induced three-order upconversion enhancement:combining surface plasmon effect and photonic crystal effect[J]. Adv. Mater., 2016, 28(13):2518-2525.
SHARMA A K, KAUR B. Fiber optic SPR sensing enhancement in NIR via optimum radiation damping catalyzed by 2D materials[J]. IEEE Photonics Technol. Lett., 2018, 30(23):2021-2024.
LI M, CUSHING S K, WU N Q. Plasmon-enhanced optical sensors:a review[J]. Analyst, 2015, 140(2):386-406.
HUTTER E, FENDLER J H. Exploitation of localized surface plasmon resonance[J]. Adv. Mater., 2004, 16(19):1685-1706.
DRAGAN A I, GEDDES C D. Metal-enhanced fluorescence:the role of quantum yield, Q0, in enhanced fluorescence[J]. Appl.Phys. Lett., 2012, 100(9):093115-1-4.
ZHANG H, LI Y, IVANOV I A, et al.. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells[J]. Angew. Chem. Int. Ed., 2010, 49(16):2865-2868.
MASSON J F. Surface plasmon resonance clinical biosensors for medical diagnostics[J]. ACS Sens., 2017, 2(1):16-30.
AGRAWAL A, CHO S H, ZANDI O, et al.. Localized surface plasmon resonance in semiconductor nanocrystals[J]. Chem. Rev., 2018, 118(6):3121-3207.
AKSELROD G M, ARGYROPOULOS C, HOANG T B, et al.. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nat. Photonics, 2014, 8(11):835-840.
OH E, HONG MY, LEE D, et al.. Inhibition assay of biomolecules based on fluorescence resonance energy transfer(FRET) between quantum dots and gold nanoparticles[J]. J. Am. Chem. Soc., 2005, 127(10):3270-3271.
PRIYAM A, IDRIS N M, ZHANG Y. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging[J]. J. Mater. Chem., 2012, 22(3):960-965.
SUDHEENDRA L, ORTALAN V, DEY S, et al.. Plasmonic enhanced emissions from cubic NaYF4:Yb:Er/Tm nanophosphors[J]. Chem. Mater., 2011, 23(11):2987-2993.
JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Phys. Rev. B, 1972, 6(12):4370-4379.
BEAMISH F E. The Analytical Chemistry of The Noble Metals[M]. Oxford:Pergamon Press, 1972.
RUBAN A, HAMMER B, STOLTZE P, et al.. Surface electronic structure and reactivity of transition and noble metals[J]. J. Mol. Catal. A Chem., 1997, 115(3):421-429.
MAHMOUD M A, QIAN W, EL-SAYED M A. Following charge separation on the nanoscale in Cu2O-Au nanoframe hollow nanoparticles[J]. Nano Lett., 2011, 11(8):3285-3289.
SKRABALAK S E, CHEN J Y, SUN Y G, et al.. Gold nanocages:synthesis, properties, and applications[J]. Acc. Chem. Res., 2008, 41(12):1587-1595.
WRIEDT T. Mie theory: a review[M]. HERGERT W, WRIEDTT.The Mie Theory. Berlin, Heidelberg: Springer, 2012: 53-71.
MISHCHENKO M I, TRAVIS L D, MACKOWSKI D W. T-matrix computations of light scattering by nonspherical particles:a review[J]. J. Quant. Spectrosc. Radiat. Transf., 1996, 55(5):535-575.
ALIMENTI F, MEZZANOTTE P, ROSELLI L, et al.. Modal absorption in the FDTD method:a critical review[J]. Int. J. Numer. Model. Electron. Netw. Devices Fields, 1997, 10(4):245-264.
YEE K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans. Antennas Propag., 1966, 14(3):302-307.
YURKIN M A, HOEKSTRA A G. The discrete dipole approximation:an overview and recent developments[J]. J. Quant. Spectrosc. Radiat. Transf., 2007, 106(1-3):558-589.
DRAINE B T. The discrete-dipole approximation and its application to interstellar graphite grains[J]. Astrophys. J., 1988, 333:848-872.
GOODMAN J J, DRAINE B T, FLATAU P J. Application of fast-Fourier-transform techniques to the discrete-dipole approximation[J]. Opt. Lett., 1991, 16(15):1198-1200.
DRAINE B T, GOODMAN J. Beyond Clausius-Mossotti:wave propagation on a polarizable point lattice and the discrete dipole approximation[J]. Astrophys. J., 1993, 405(2):685-697.
DRAINE B T, FLATAU P J. Discrete-dipole approximation for periodic targets:theory and tests[J]. J. Opt. Soc. Am. A, 2008, 25(11):2693-2703.
DRAINE B T, FLATAU P J. Discrete-dipole approximation for scattering calculations[J]. J. Opt. Soc. Am. A, 1994, 11(4):1491-1499.
FLATAU P J, DRAINE B T. Fast near field calculations in the discrete dipole approximation for regular rectilinear grids[J]. Opt. Express, 2012, 20(2):1247-1252.
YANG Y F, QU Y Q, ZHAO J W, et al.. Fabrication of and drug delivery by an upconversion emission nanocomposite with monodisperse LaF3:Yb, Er core/mesoporous silica shell structure[J]. Eur. J. Inorg. Chem., 2010, 2010(33):5195-5199.
PIAO J G, WANG L M, GAO F, et al.. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy[J]. ACS Nano, 2014, 8(10):10414-10425.
YAN K, YU J N, ZHANG B B, et al.. Novel fluorinated polymer-mediated upconversion nanoclusters for pH/redox triggered anticancer drug release and intracellular imaging[J]. Macromol. Chem. Phys., 2017, 218(11):1700090-1-10.
YOU J, ZHANG G D, LI C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release[J]. ACS Nano, 2010, 4(2):1033-1041.
LV R C, YANG G X, DAI Y L, et al.. Self-produced bubble-template synthesis of La2O3:Yb/Er@Au hollow spheres with markedly enhanced luminescence and release properties[J]. Crystengcomm, 2014, 16(41):9612-9621.
YAO C, WANG P Y, LI X M, et al.. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance[J]. Adv. Mater., 2016, 28(42):9341-9348.
ZHAO L, GE X Q, ZHAO H J, et al.. Double-sensitive drug release system based on MnO2 assembled upconversion nanoconstruct for double-model guided chemotherapy[J]. ACS Appl. Nano Mater., 2018, 1(4):1648-1656.
ZHANG Y, ZHANG Y, SONG G, et al.. A DNA-azobenzene nanopump fueled by upconversion luminescence for controllable intracellular drug release[J]. Angew. Chem. Int. Ed., 2019, 58(50):18207-18211.
TANG H S, YAO L Q, YANG J P, et al.. Near-infrared-light-induced fast drug release platform:mesoporous silica-coated gold nanoframes for thermochemotherapy[J]. Part. Part. Syst. Char., 2016, 33(6):316-322.
LV R C, YANG P P, DAI Y L, et al.. Lutecium fluoride hollow mesoporous spheres with enhanced up-conversion luminescent bioimaging and light-triggered drug release by gold nanocrystals[J]. ACS Appl. Mater. Interfaces, 2014, 6(17):15550-15563.
SCHIETINGER S, AICHELE T, WANG H Q, et al.. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals[J]. Nano Lett., 2010, 10(1):134-138.
GE W, ZHANG X R, LIU M, et al.. Distance dependence of gold-enhanced upconversion luminescence in Au/SiO2/Y2O3:Yb3+, Er3+ nanoparticles[J]. Theranostics, 2013, 3(4):282-288.
LI Z Q, WANG L M, WANG Z Y, et al.. Modification of NaYF4:Yb, Er@SiO2nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions[J]. J. Phys. Chem. C, 2011, 115(8):3291-3296.
SABOKTAKIN M, YE X C, CHETTIAR U K, et al.. Plasmonic enhancement of nanophosphor upconversion luminescence in au nanohole arrays[J]. ACS Nano, 2013, 7(8):7186-7192.
KANG F W, HE J J, SUN T Y, et al.. Plasmonic dual-enhancement and precise color tuning of gold nanorod@SiO2 coupled core-shell-shell upconversion nanocrystals[J]. Adv. Funct. Mater., 2017, 27(36):1701842-1-11.
LV R C, FENG M, PARAK W J. Up-conversion luminescence properties of lanthanide-gold hybrid nanoparticles as analyzed with discrete dipole approximation[J]. Nanomaterials, 2018, 8(12):989-1-12.
YIN D G, WANG C C, OUYANG J,et al.. Synthesis of a novel core-shell nanocomposite Ag@SiO2@Lu2O3:Gd/Yb/Er for large enhancing upconversion luminescence and bioimaging[J]. ACS Appl. Mater. Interfaces, 2014, 6(21):18480-18488.
HINAMOTO T, SUGIMOTO H, FUJII M. Metal-core/dielectric-shell/metal-cap composite nanoparticle for upconversion enhancement[J]. J. Phys. Chem. C, 2018, 122(30):17465-17472.
LV R C, YANG F, JIANG X, et al.. Plasmonic modulated upconversion fluorescence by adjustable distributed gold nanoparticles[J]. J. Lumin., 2020, 220:116974.
GAO H, LIU R, GAO F P, et al.. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro[J]. ACS Nano, 2014, 8(7):7260-7271.
DONG L Y, LI Y C, LI Z, et al.. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors[J]. ACS Appl. Mater. Interfaces, 2018, 10(11):9247-9256.
WU C Y, CHEN H Q, CORRIGAN N,et al.. Computer-guided discovery of a pH-responsive organic photocatalyst and application for pH and light dual-gated polymerization[J]. J. Am. Chem. Soc., 2019, 141(20):8207-8220.
BANSAL A, YANG F Y, XI T, et al.. In vivo wireless photonic photodynamic therapy[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(7):1469-1474.
KIM J, WON Y, GOH S H, et al.. A redox-responsive theranostic agent for target-specific fluorescence imaging and photodynamic therapy of EGFR-overexpressing triple-negative breast cancers[J]. J. Mater. Chem. B, 2016, 4(42):6787-6790.
TIAN B, WANG Q H, SU Q Q, et al.. In vivo biodistribution and toxicity assessment of triplet-triplet annihilation-based upconversion nanocapsules[J]. Biomaterials, 2017, 112:10-19.
AI X Z, LYU L, ZHANG Y, et al.. Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals[J]. Angew. Chem. Int. Ed., 2017, 56(11):3031-3035.
WANG Y C, BLACK K C, LUEHMANN H, et al.. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment[J]. ACS Nano, 2013, 7(3):2068-2077.
XIAO J W, FAN S X, WANG F, et al.. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells[J]. Nanoscale, 2014, 6(8):4345-4351.
TANG S H, CHEN M, ZHENG N F. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy[J]. Small, 2014, 10(15):3139-3144.
CHENG X J, SUN R, YIN L, et al.. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo[J]. Adv. Mater., 2017, 29(6):1604894-1-6.
XIA Y N, LI W Y, COBLEY C M, et al.. Gold nanocages:from synthesis to theranostic applications[J]. Acc. Chem. Res., 2011, 44(10):914-924.
GE X Q, SONG Z M, SUN L N, et al.. Lanthanide (Gd3+ and Yb3+) functionalized gold nanoparticles for in vivo imaging and therapy[J]. Biomaterials, 2016, 108:35-43.
RYCENGA M, COBLEY C M, ZENG J, et al.. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications[J]. Chem. Rev., 2011, 111(6):3669-3712.
ZHANG Z J, WANG J, NIE X, et al.. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. J. Am. Chem. Soc., 2014, 136(20):7317-7326.
VAUPEL P, HARRISON L. Tumor hypoxia:causative factors, compensatory mechanisms, and cellular response[J]. Oncologist, 2004, 9(S5):4-9.
YAU S H, VARNAVSKI O, GOODSON III T. An ultrafast look at Au nanoclusters[J]. Acc. Chem. Res., 2013, 46(7):1506-1516.
ZHANG X, ZHANG G Y, ZHANG B D, et al.. Synthesis of hollow Ag-Au bimetallic nanoparticles in polyelectrolyte multilayers[J]. Langmuir, 2013, 29(22):6722-6727.
LIU J, YANG F, FENG M, et al.. Surface plasmonic enhanced imaging-guided photothermal/photodynamic therapy based on lanthanide-metal nanocomposites under single 808 nm laser[J]. ACS Biomater. Sci. Eng., 2019, 5(10):5051-5059.
XU J, XU L G, WANG C Y, et al.. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer[J]. ACS Nano, 2017, 11(5):4463-4474.
DING B B, SHAO S, YU C, et al.. Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy[J]. Adv. Mater., 2018, 30(52):1802479.
SHAO Y L, LIU B, DI Z H, et al.. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors[J]. J. Am. Chem. Soc., 2020, 142(8):3939-3946.
LIN B, LIU J, WANG Y X, et al.. Enhanced upconversion luminescence-guided synergistic antitumor therapy based on photodynamic therapy and immune checkpoint blockade[J]. Chem. Mater., 2020, 32(11):4627-4640.
0
Views
287
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution