Jin-you LI, Hai-long WANG, Jin YANG, et al. Voltage-temperature Characteristics of InGaAs/GaAs/InGaP Quantum Well Laser. [J]. Chinese Journal of Luminescence 41(8):971-976(2020)
DOI:
Jin-you LI, Hai-long WANG, Jin YANG, et al. Voltage-temperature Characteristics of InGaAs/GaAs/InGaP Quantum Well Laser. [J]. Chinese Journal of Luminescence 41(8):971-976(2020) DOI: 10.37188/fgxb20204108.0971.
Voltage-temperature Characteristics of InGaAs/GaAs/InGaP Quantum Well Laser
The current-voltage characteristics of an InGaAs/GaAs/InGaP quantum well laser at different temperatures have been investigated. A theoretical model has been developed to simulate the current-voltage characteristics of the laser. The length of the laser cavity utilized in the experiment is 0.3 mm, and the ridge width of the laser is 3 μm. Experimental voltage-temperature coefficients (d,V,/d,T,) of the laser are from 7.87 to 8.32 mV/K within 15-100 K, and are from 2.93 to 3.17 mV/K within 100-300 K. Theoretical voltage-temperature coefficients of the laser in the range of 15-100 K are 2.56 to 2.75 mV/K, and in the range of 100-300 K are 3.91 to 4.15 mV/K. Within 100-300 K, the theoretical voltage-temperature coefficients are close to the experimental coefficients. However, within 15-100 K, there are large differences between the theoretical coefficients and experimental ones, which need to be improved.
关键词
量子阱激光器InGaAs/GaAs/InGaP低温温度电压特性
Keywords
quantum well laserInGaAs/GaAs/InGaPlow temperaturevoltage-temperature characteristics
references
ZILKIEA J, SRINIVASAN P, TRITA A, et al.. Multi-micron silicon photonics platform for highly manufacturable and versatile photonic integrated circuits[J].IEEE J. Sel. Top. Quant. Electron., 2019, 25(5):8200713-1-13.
WILLNERA E. Optical Fiber Telecommunications Ⅶ[M]. United States:Academic Press, 2019.
WANG F, JIA S H, WANG Y L, et al.. Recent developments in modulation spectroscopy for methane detection based on tunable diode laser[J].Appl. Sci., 2019, 9(14):2816-1-16.
RAMÍREZ-MARTÍNEZ N J, NÚÑEZ-VELÁZQUEZ M, UMNIKOV A A, et al.. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD[J].Opt. Express, 2019, 27(1):196-201.
FATHOLOLOUMI S, DUPONT E, CHAN C W I, et al.. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling[J].Opt. Express, 2012, 20(4):3866-3876.
LONG R, WANG H L, CHENG R H, et al.. Influence of external cavity feedback on the output characteristics of quantum-dot lasers[J].Chin. J. Lumin., 2013, 34(4):474-479. (in Chinese)
QIAO Z L, LI X, WANG H, et al.. High-performance 1.06μm InGaAs/GaAs double-quantum-well semiconductor lasers with asymmetric heterostructure layers[J].Semicond. Sci. Technol., 2019, 34(5):055013-1-6.
ZHANG S B, ZHANG Z M, ZHUKOVSKYI M, et al.. Up-conversion emission thermometry for semiconductor laser cooling[J].J. Lumin., 2020, 222:117088.
BUTT N J, ROBERTS R A, PATNAIK S S. Laser diode optical output dependence on junction temperature for high-power laser systems[J].Opt. Laser Technol., 2020, 125:106019.
LINDEMANN M, JUNG N, STADLER P, et al.. Bias current and temperature dependence of polarization dynamics in spin-lasers with electrically tunable birefringence[J].AIP Adv., 2020, 10(3):035211-1-5.
SELETSKIY D V, MELGAARD S D, BIGOTTA S, et al.. Laser cooling of solids to cryogenic temperatures[J].Nat. Photonics, 2010, 4(3):161-164.
MELGAARD S D, ALBRECHT A R, HEHLEN M P, et al.. Solid-state optical refrigeration to sub-100 Kelvin regime[J].Sci. Rep., 2016, 6:20380-1-6.
IJICHI T, OHKUBO M, MATSUMOTO N, et al.. High power CW operation of aluminium-free InGaAs/GaAs/InGaP strained layer single quantum well ridge waveguide lasers[C].Proceedings of The 12th IEEE International Conference on Semiconductor Laser, Davos, Switzerland, 1990: 44-45.
AKHLESTINA S A, VASIL'EV V K, VIKHROVA O V, et al.. Controlling the wavelength of InGaAs/GaAs/InGaP lasers by ion implantation[J].Tech. Phys. Lett., 2010, 36(2):189-191.
ALEAHMAD P, BAKHSHI S, CHRISTODOULIDES D, et al.. Controllable red and blue shifting of InGaAsP quantum well bandgap energy for photonic device integration[J].Mater. Res. Express, 2015, 2(8):086302-1-5.
BIRYUKOV A A, ZVONKOV B N, NEKORKIN S M, et al.. Efficient generation of the first waveguide mode in the InGaAs/GaAs/InGaP heterolaser[J].Semiconductors, 2008, 42(3):354-357.
TANG Y, CAO C F, ZHAO X Y, et al.. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers[J].Laser Optoelect. Prog., 2019, 56(13):131402-1-5. (in Chinese)
VAN ZEGHBROECK Z. Principles of Semiconductor Devices[M]. Colarado:Colarado University, 2004.
GOETZ K H, BIMBERG D, JVRGENSEN H, et al.. Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44 < x < 0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition[J]. J. Appl. Phys., 1983, 54(8):4543-4552.
PAUL S, ROY J B, BASU P K. Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1-xAs[J].J. Appl. Phys., 1991, 69(2):827-829.
HANSEN G L, SCHMIT J L. Calculation of intrinsic carrier concentration in Hg1-xCdxTe[J].J. Appl. Phys., 1983, 54(3):1639-1640.
BEBB H B, RATLIFF C R. Numerical tabulation of integrals of Fermi functions using klim plim density of states[J].J. Appl. Phys., 1971, 42(8):3189-3194.
ROSBECK J P, HARPER M E. Doping and composition profiling in Hg1-xCdxTe by the graded capacitance-voltage method[J].J. Appl. Phys., 1991, 62(5):1717-1722.
XI Y, SCHUBERT E F. Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method[J].Appl. Phys. Lett., 2004, 85(12):2163-2165.
Low Temperature 808 nm High Efficiency Semiconductor Laser
Study on Carriers Transport Mechanism in OLED by Variable Temperature Transient Electroluminescence
Deposition of Al2O3 Film Using Atomic Layer Deposition Method at Low Temperature as Encapsulation Layer for OLEDs
Electrical Properties and Photosensitivity of Single ZnO Nanowire at Low Temperatures
Fabrication of Transparent Indium Zinc Oxide Thin Film Transistors by Sol-gel Technology
Related Author
No data
Related Institution
School of Optoelectronic Engineering, Changchun University of Science and Technology
State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology
College of Physics and Electronic Engineering, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
Key Laboratory of Semiconductor Materials Science, Chinese Academy of Sciences