1.大连理工大学 精细化工国家重点实验室, 辽宁 大连 116024
扫 描 看 全 文
Zhi-peng MENG, Su-li WU. Manipulating Upconversion Luminescence of Rare Earth by Photonic Crystals. [J]. Chinese Journal of Luminescence 41(8):913-925(2020)
Zhi-peng MENG, Su-li WU. Manipulating Upconversion Luminescence of Rare Earth by Photonic Crystals. [J]. Chinese Journal of Luminescence 41(8):913-925(2020) DOI: 10.37188/fgxb20204108.0913.
稀土掺杂上转换材料由于其高化学稳定性、低生物毒性,在发光显示、防伪和生物成像等领域得到了广泛的应用。稀土掺杂上转换材料的基质晶格和掺杂离子决定着其发光强度和颜色。光子晶体(PCs)是折射率不同的材料在空间周期性排列形成的有序结构,其最显著的特征是具有光子禁带(PBG)。波长位于光子禁带内的光不能透过光子晶体而被反射回来,因而光子晶体具有优异的光调控能力。本文综述了一维、二维和三维光子晶体对稀土上转换发光调控的进展,介绍了利用光子禁带与上转换荧光发射峰的相对位置对发光进行控制的方法。重点从蛋白石结构和反蛋白石结构两个方面论述了三维光子晶体对上转换发光的调控:对于反蛋白石光子晶体,综述了利用上转换材料构筑反蛋白和利用其他材料构筑反蛋白,通过布拉格反射调控上转换材料的发光;对于蛋白石光子晶体,论述了利用不同折射率胶体微球构筑三维光子晶体对稀土上转换发光进行调控。最后总结了利用等离子体共振和光子禁带共同作用调控上转换发光的研究现状,并展望了利用光子晶体调控上转换发光的发展方向。
Rare earth doped upconversion materials have been widely used in display, anti-counterfeiting and bio-imaging fields due to their high chemical stability and low biotoxicity. The host lattice and doped ions of the upconversion materials determined their luminescence intensity and colors. Photonic crystals(PCs) are periodically arranged structures of materials with different refractive index. The most notable feature of PCs is the existence of photonic band gap(PBG). Light with a wavelength within the PBG cannot pass through the PC and will be reflected back. Therefore, PCs have excellent ability to manipulate light. This paper reviewed the research progress about the luminescence manipulating of rare earth doped upconversion materials by one-dimensional, two-dimensional and three-dimensional PCs, and introduced the method of controlling the luminescence by adjusting the relative position of the PBG and the upconversion emission peaks. We mainly focused on the ability of three-dimensional PCs with inverse opal or opal structures to control upconversion luminescence. For inverse PCs, the use of upconversion materials or other materials to construct inverse opal PCs to control upconversion luminescence was discussed in detail. For opal PCs, three-dimensional PCs constructed by colloidal microspheres with different refractive index were introduced for the regulation of the upconversion luminescence. Finally, the development in the study about co-effect of plasmon resonance and PBG to enhance luminescence was summarized, and the future developing directions of upconversion luminescence regulation by PCs were prospected.
上转换光子晶体光子禁带发光调控
upconversionphotonic crystalsphotonic bandgapluminescence regulation
TIAN G, GU Z J, ZHOU L J, et al.. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery[J].Adv. Mater., 2012, 24(9):1226-1231.
LI Z Q, ZHANG Y, JIANG S. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J].Adv. Mater., 2008, 20(24):4765-4769.
IDRIS N M, LI Z Q, YE L, et al.. Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles[J].Biomaterials, 2009, 30(28):5104-5113.
HE M, PANG X C, LIU X Q, et al.. Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells[J].Angew. Chem. Int. Ed., 2016, 55(13):4280-4284.
YU J, YANG Y L, FAN R Q, et al.. Enhanced photovoltaic performance of dye-sensitized solar cells using a new photoelectrode material:upconversion YbF3-Ho/TiO2 nanoheterostructures[J].Nanoscale, 2016, 8(7):4173-4180.
CHEN X, XU W, SONG H W, et al.. Highly efficient LiYF4:Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application[J].ACS Appl. Mater. Interfaces, 2016, 8(14):9071-9079.
METZ P W, MARZAHL DT, MAJID A, et al.. Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions[J].Laser Photonics Rev., 2016, 10(2):335-344.
DENG R R, QIN F, CHEN R F, et al.. Temporal full-colour tuning through non-steady-state upconversion[J].Nat. Nanotechnol., 2015, 10(3):237-242.
LEI L, DAI X R, CHENG Y, et al.. Dual-mode color tuning based on upconversion core/triple-shell nanostructure[J].J. Mater. Chem. C, 2019, 7(11):3342-3350.
LIU H L, XU J H, WANG H, et al.. Tunable resonator-upconverted emission (TRUE) color printing and applications in optical security[J].Adv. Mater., 2019, 31(15):1807900.
GAO D L, ZHANG X Y, CHONG B, et al.. Simultaneous spectra and dynamics processes tuning of a single upconversion microtube through Yb3+ doping concentration and excitation power[J].Phys. Chem. Chem. Phys., 2017, 19(6):4288-4296.
SHI R K, LING X C, LI X N, et al.. Tuning hexagonal NaYbF4 nanocrystals down to sub-10 nm for enhanced photon upconversion[J].Nanoscale, 2017, 9(36):13739-13746.
WANG F, WANG J, LIU X G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles[J].Angew. Chem., 2010, 122(41):7618-7622.
HAN S Y, DENG R R, XIE X J, et al.. Enhancing luminescence in lanthanide-doped upconversion nanoparticles[J].Angew. Chem. Int. Ed., 2014, 53(44):11702-11715.
LÓPEZ C. Materials aspects of photonic crystals[J].Adv. Mater., 2003, 15(20):1679-1704.
WU S L, LIU T F, TANG B T, et al.. Structural color circulation in a bilayer photonic crystal by increasing the incident angle[J].ACS Appl. Mater. Interfaces, 2019, 11(10):10171-10177.
SU X, SUN X Q, WU S L, et al.. Manipulating the emission intensity and lifetime of NaYF4:Yb3+, Er3+ simultaneously by embedding it into CdS photonic crystals[J].Nanoscale, 2017, 9(22):7666-7673.
WU S L, XIA H B, XU J H, et al.. Manipulating luminescence of light emitters by photonic crystals[J].Adv. Mater., 2018, 30(47):1803362.
GENG D L, CABELLO-OLMO E, LOZANO G, et al.. Photonic structuring improves the colour purity of rare-earth nanophosphors[J].Mater. Horiz., 2018, 5(4):661-667.
HOFMANN C L M, HERTER B, FISCHER S, et al.. Upconversion in a Bragg structure:photonic effects of a modified local density of states and irradiance on luminescence and upconversion quantum yield[J].Opt. Express, 2016, 24(13):14895-14914.
MAO C C, MIN K, BAE K, et al.. Enhanced upconversion luminescence by two-dimensional photonic crystal structure[J].ACS Photonics, 2019, 6(8):1882-1888.
WANG H, YIN Z, XU W, et al.. Remarkable enhancement of upconversion luminescence on 2-d anodic aluminum oxide photonic crystals[J].Nanoscale, 2016, 8(19):10004-10009.
STEIN A, LI F, DENNY N R. Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles[J].Chem. Mater., 2008, 20(3):649-666.
LI Z X, LI L L, ZHOU H P, et al.. Colour modification action of an upconversion photonic crystal[J].Chem. Commun., 2009, 2009(43):6616-6618.
ZHANG F, DENG Y H, SHI Y F, et al.. Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals[J].J. Mater. Chem., 2010, 20(19):3895-3900.
YAN D, ZHU J L, WU H J, et al.. Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal[J].J. Mater. Chem., 2012, 22(35):18558-18563.
YANG Z W, YAN D, ZHU K, et al.. Color tunability of upconversion emission in YbO3:Yb, Er inverse opal[J].Mater. Lett., 2011, 65(8):1245-1247.
YANG Z W, YAN L, YAN D, et al.. Color tunable upconversion emission in Yb, Er co-doped bismuth titanate inverse opal[J].J. Am. Ceram. Soc., 2011, 94(8):2308-2310.
YANG Z W, ZHU K, SONG Z G, et al.. Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals[J].Appl. Opt., 2011, 50(3):287-290.
YANG Z W, ZHU K, SONG Z G, et al.. Preparation and upconversion emission properties of TiO2:Yb, Er inverse opals[J].Solid State Commun., 2011, 151(5):364-367.
YANG Z W, ZHU K, SONG Z G, et al.. Significant reduction of upconversion emission in CaTiO3:Yb, Er inverse opals[J].Thin Solid Films, 2011, 519(16):5696-5699.
YANG Z W, ZHU K, SONG Z G, et al.. Photonic band gap and upconversion emission properties of Yb, Er co-doped lead lanthanum titanate inverse opal photonic crystals[J].Appl. Phys. A, 2011, 103(4):995-999.
YANG Z W, YAN D, SONG Z G, et al..Preparation and upconversion emission properties of Y2O3: Er, Yb inverse opal[C].Proceedings of 2012 Symposium on Photonics and Optoelectronics, Shanghai, 2012: 1-3.
YANG Z W, YAN D, SONG Z G, et al.. Investigation of luminescence properties in SiO2:Tb, Yb upconversion inverse opal[J].J. Lumin., 2012, 132(6):1550-1552.
YANG Z W, YAN D, WU H J, et al.. Photoluminescence in Gd2O3:Er3+, Yb3+ upconversion inverse opal[J].J. Phys. Chem. Solids, 2012, 73(11):1278-1281.
YANG Z W, YAN D, ZHU K, et al.. Modification of the upconversion spontaneous emission in photonic crystals[J].Mater. Chem. Phys., 2012, 133(2-3):584-587.
YANG Z W, ZHU J L, YAN D, et al.. Preparation and upconversion emission properties of Yb, Er co-doped Y2Ti2O7 upconversion inverse opal[J].Opt. Mater., 2012, 34(11):1771-1775.
YANG Z W, WU H J, LIAO J Y, et al.. Infrared to visible upconversion luminescence in Er3+/Yb3+ co-doped CeO2 inverse opal[J].Mater. Sci. Eng. B, 2013, 178(15):977-981.
YANG Z W, YAN D, SONG Z G, et al.. Synthesis and upconversion emission properties of Pb0.9La0.1TiO3:Yb, Tb inverse opals by sol-gel technique[J].Mater. Technol., 2013, 28(4):187-191.
WU H J, YANG Z W, LIAO J Y, et al.. Upconversion luminescence properties of three-dimensional ordered macroporous CeO2:Er3+, Yb3+[J].J. Alloys Compd., 2014, 586:485-487.
YANG J Z, YANG Z W, WANG Y D,et al.. Upconversion luminescence enhancement of SiO2:Yb3+, Tb3+ inverse opal photonic crystal by gold nanoparticles[J].J. Non-Cryst. Solids, 2016, 437:53-57.
YANG Y D, ZHOU P W, XU W, et al.. NaYF4:Yb3+, Tm3+ inverse opal photonic crystals and NaYF4:Yb3+, Tm3+/TiO2 composites:synthesis, highly improved upconversion properties and nir photoelectric response[J].J. Mater. Chem. C, 2016, 4(4):659-662.
ZHU Y S, XU W, ZHANG H Z, et al.. Inhibited local thermal effect in upconversion luminescence of YVO4:Yb3+, Er3+ inverse opals[J].Opt. Express, 2012, 20(28):29673-29678.
QU X S, SONG H W, BAI X, et al.. Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2:Er3+, Yb3+[J].Inorg. Chem., 2008, 47(20):9654-9659.
TAO L, XU W, ZHU Y S, et al.. Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals[J].J. Mater. Chem. C, 2014, 2(21):4186-4195.
WANG Y F, XU W, CUI S B, et al.. Highly improved upconversion luminescence in nagd (WO4)2:Yb3+/Tm3+ inverse opal photonic crystals[J].Nanoscale, 2015, 7(4):1363-1373.
XU S, XU W, WANG Y F, et al.. NaYF4:Yb, Tm nanocrystals and TiO2 inverse opal composite films:a novel device for upconversion enhancement and solid-based sensing of avidin[J].Nanoscale, 2014, 6(11):5859-5870.
MENG Z P, WU S L, TANG B T, et al.. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting[J].Nanoscale, 2018, 10(30):14755-14762.
MENG Z P, HUANG B T, WU S L, et al.. Bio-inspired transparent structural color film and its application in biomimetic camouflage[J].Nanoscale, 2019, 11(28):13377-13384.
STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J].J. Colloid Interface Sci., 1968, 26(1):62-69.
YIN Z, ZHU Y S, XU W, et al.. Remarkable enhancement of upconversion fluorescence and confocal imaging of pmma opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals[J].Chem. Commun., 2013, 49(36):3781-3783.
LIAO J Y, YANG Z W, WU H J, et al.. Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals[J].J. Mater. Chem. C, 2013, 1(40):6541-6546.
ZHU C, ZHOU W Y, FANG J J, et al.. Improved upconversion efficiency and thermal stability of NaYF4@SiO2 photonic crystal film[J].J. Alloys Compd., 2018, 741:337-347.
BONIFACIO L D, LOTSCH B V, PUZZO D P, et al.. Stacking the nanochemistry deck:structural and compositional diversity in one-dimensional photonic crystals[J].Adv. Mater., 2009, 21(16):1641-1646.
SU X, JIANG Y, SUN X Q, et al.. Fabrication of tough photonic crystal patterns with vivid structural colors by direct handwriting[J].Nanoscale, 2017, 9(45):17877-17883.
WU Y, REN J, ZHANG S F, et al.. Nanosphere-aggregation-induced reflection and its application in large-area and high-precision panchromatic inkjet printing[J].ACS Appl. Mater. Interfaces, 2020, 12(9):10867-10874.
XIA H B, WU S L, SU X Q, et al.. Monodisperse TiO2 spheres with high charge density and their self-assembly[J].Chem. Asian J., 2017, 12(1):95-100.
SU X, XIA H B, ZHANG S F, et al.. Vivid structural colors with low angle dependence from long-range ordered photonic crystal films[J].Nanoscale, 2017, 9(9):3002-3009.
BI J J, WU S L, XIA H B, et al.. Synthesis of monodisperse single-crystal Cu2O spheres and their application in generating structural colors[J].J. Mater. Chem. C, 2019, 7(15):4551-4558.
LIU B Q, MENG Z P, WU S L, et al.. Separating and enhancing the green and red emissions of NaYF4:Yb3+/Er3+ by sandwiching them into photonic crystals with different bandgaps[J].Nanoscale Horiz., 2018, 3(6):616-623.
XU W, ZHU Y S, CHEN X, et al.. A novel strategy for improving upconversion luminescence of NaYF4:Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals[J].Nano Res., 2013, 6(11):795-807.
YIN Z, LI H, XU W, et al.. Local field modulation induced three-order upconversion enhancement:combining surface plasmon effect and photonic crystal effect[J].Adv. Mater., 2016, 28(13):2518-2525.
SHAO B, YANG Z W, WANG Y D, et al.. Coupling of ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4:Yb3+, Er3+ nanoparticles[J].ACS Appl. Mater. Interfaces, 2015, 7(45):25211-25218.
WANG H, LI M C, YIN Z, et al.. Remarkable enhancement of upconversion luminescence on cap-Ag/PMMA ordered platform and trademark anticounterfeiting[J].ACS Appl. Mater. Interfaces, 2017, 9(42):37128-37135.
LIAO J Y, YANG Z W, LAI S F, et al.. Upconversion emission enhancement of NaYF4:Yb, Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects[J].J. Phys. Chem. C, 2014, 118(31):17992-17999.
LI J, YANG Z W, CHAI Z Z, et al.. Preparation and upconversion emission enhancement of SiO2 coated YbPO4:Er3+ inverse opals with Ag nanoparticles[J].Opt. Mater. Express, 2017, 7(10):3503-3516.
0
Views
77
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution