1.浙江师范大学 化学与生命科学学院, 浙江 金华 321004
扫 描 看 全 文
Shu-fan YAO, Yu-si YAO, Wu-bin ZHENG, et al. Near-infrared Fluorescent Probe Based on Methylene Blue for Specific Detection of Hypochlorous Acid. [J]. Chinese Journal of Luminescence 41(7):791-799(2020)
Shu-fan YAO, Yu-si YAO, Wu-bin ZHENG, et al. Near-infrared Fluorescent Probe Based on Methylene Blue for Specific Detection of Hypochlorous Acid. [J]. Chinese Journal of Luminescence 41(7):791-799(2020) DOI: 10.37188/fgxb20204107.0791.
次氯酸(HOCl)是一种由过氧化氢和氯离子在髓过氧化物酶(MPO)催化作用下产生的活性氧。由于其在机体抵抗病原体的免疫防御中起着至关重要的作用,因此对HOCl的识别和检测具有非常重要的意义。目前,检测HOCl的方法有电分析法、色谱法、化学发光法和荧光分析法,其中荧光检测法以其简单、快速、高选择性、高灵敏度和实时检测等突出优点引起了许多研究者的兴趣。本文以亚甲基蓝(Methylene blue,MB)为荧光母核,设计合成了一种近红外荧光探针,MB-1,用于HOCl的特异性检测。该探针可在体外特异性检测HOCl,响应之后,荧光会有显著的增强,同时伴有溶液颜色从无色到蓝色的明显变化。该探针对HOCl具有较高的灵敏度,其检测限为8.2 nmol/L。此外,该探针具有较好的抗干扰能力,为在生理水平上检测HOCl提供了可能。
Hypochlorous acid (HOCl) is a reactive oxygen species produced by hydrogen peroxide and chloride ions under the catalysis of myeloperoxidase (MPO). HOCl plays an important role in immune defense against pathogens. Therefore, it is of great significance to sense and detect HOCl. There are several methods for the detection of HOCl, such as electroanalysis, chromatography, chemiluminescence and fluorescence analysis and so on. Currently, fluorescence imaging technique has attracted many researchers' interest because of its advantages, including high selectivity and sensitivity, easy operation, quick response, and real-time detection. In this paper, a methylene blue-based near-infrared fluorescence probe,MB-1, was designed and synthesized for the fast and specific detection of HOCl. The probe can specifically detect HOCl ,in vitro, accompanied by a significant enhancement of near-infrared fluorescence intensity and a remarkable colour change from colorless to blue. Moreover, the probe displayed high sensitivity towards HOCl and limit of detection (LOD) was as low as 8.2 nmol/L. In addition, the probe showed good anti-interference ability, indicating that it has the potential to detect HOCl at a physiological level.
次氯酸荧光探针活性氧亚甲基蓝近红外
hypochlorous acidfluorescent probesreactive oxygen speciesmethylene bluenear-infrared
LAMBETHJ D. Nox enzymes, ROS, and chronic disease:an example ofantagonistic pleiotropy[J].Free Radic. Biol. Med., 2007, 43(3):332-347.
WINTERBOURN C C. Reconciling the chemistry and biology of reactive oxygenspecies[J].Nat. Chem. Biol., 2008, 4(5):278-286.
BRECKWOLDTM O, CHEN J W, STANGENBERG L, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase[J].Proc. Natl. Acad. Sci. USA, 2008, 105(47):18584-18589.
PATTISOND I, DAVIES M J. Evidence for rapid inter- and intramolecular chlorinetransfer reactions of histamine and carnosine chloramines:implications for the prevention of hypochlorous-acid-mediated damage[J].Biochemistry, 2006, 45(26):8152-8162.
PROKOPOWICZ Z M, ARCE F, BIEDRON R, et al. Hypochlorousacid:a natural adjuvant that facilitates antigen processing, cross-priming, and the induction of adaptive immunity[J].J. Immunol., 2010, 184(2):824-835.
MEHTA N J, ASMARO K, HERMIZ D J, et al. Hypochlorite converts cysteinyl-dopamine into a cytotoxic product:a possible factor in Parkinson's disease[J].Free Radic. Biol. Med., 2016, 101:44-52.
STAMP L K, KHALILOVA I, TARR J M, et al. Myeloperoxidase and oxidative stress in rheumatoid arthritis[J].Rheumatology, 2012, 51(10):1796-1803.
GORRINI C, HARRIS I S, MAK T W. Modulation of oxidative stress as an anticancer strategy[J].Nat. Rev. Drug Discov., 2013, 12(12):931-947.
PAN B, REN H, LV X F, et al. Hypochlorite-induced oxidative stress elevates the capability of HDL in promoting breast cancer metastasis[J].J. Transl. Med., 2012, 10(1):65-1-13.
ODOBASIC D, MULJADI R C M, O'SULLIVAN K M, et al. Suppression of autoimmunity andrenal disease in pristane-induced lupus by myeloperoxidase[J].Arthritis Rheumtal., 2015, 67(7):1868-1880.
THIAGARAJAN S, WU Z Y, CHEN S M. Amperometric determination of sodium hypochloriteat poly MnTAPP-nano Au film modified electrode[J].J. Electroanal. Chem., 2011, 661(2):322-328.
WATANABE T, IDEHARA T, YOSHIMURA Y, et al. Simultaneous determinationof chlorine dioxide and hypochlorite in water by high-performance liquid chromatography[J].J. Chromatogr. A, 1998, 796(2):397-400.
MARINO D F, INGLE J D. Determination of chlorine in water by luminol chemiluminescence[J].Anal. Chem., 1981, 53(3):455-458.
PAK Y L, PARK S J, WU D, et al. N-heterocycliccarbene boranes as reactive oxygen species-responsive materials:applicationto the two-photon imaging of hypochlorous acid in living cells and tissues[J].Angew. Chem., 2018, 130(6):1583-1587.
XU Q L, HEO C H, KIM J A, et al. A selective imidazoline-2-thione-bearing two-photonfluorescent probe for hypochlorous acid in mitochondria[J].Anal. Chem., 2016, 88(12):6615-6620.
JIANG Y L, WU S S, JIN C, et al. Novel diaminomaleonitrile-basedfluorescent probe for ratiometric detection and bioimaging of hypochlorite[J].Sens. Actuators B Chem., 2018, 265:365-370.
ZHAN Z X, LIU R, CHAI L, et al. Turn-on fluorescent probe forexogenous and endogenous imaging of hypochlorous acid in living cells andquantitative application in flow cytometry[J].Anal. Chem., 2017, 89(17):9544-9551.
JIAO X Y, XIAO Y S, LI Y, et al. Evaluating drug-inducedliver injury and its remission via discrimination and imaging of HClO and H2S with a two-photon fluorescent probe[J].Anal. Chem., 2018, 90(12):7510-7516.
XING P F, FENG Y X, NIU Y M, et al. A water-soluble, two-photon probe for imaging endogenous hypochlorous acid in live tissue[J].Chem. Eur. J., 2018, 24(22):5748-5753.
LIN Y, WANG L, AGRAWALLA B K, et al. Development of targetable two-photon fluorescent probes to imagehypochlorous acid in mitochondria and lysosome in live cell and inflamed mousemodel[J].J. Am. Chem. Soc., 2015, 137(18):5930-5938.
HAN X, TIAN C, JIANG J J, et al. Tworatiometric fluorescent probes for hypochlorous acid detection and imaging inliving cells[J].Talanta, 2018, 186:65-72.
KOIDE Y, URANO Y, HANAOKA K, et al. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorousacid and its applications for biological imaging[J].J. Am. Chem. Soc., 2011, 133(15):5680-5682.
JIN Y, LV M H, TAO Y F, et al. A water-soluble BODIPY-based fluorescent probe for rapid and selective detection of hypochlorous acid in living cells[J].Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 219:569-575.
KANG J, HUO F J, YUE Y K, et al. A solvent depend on ratiometric fluorescent probe for hypochlorous acid and its application in living cells[J].Dyes Pigm., 2017, 136:852-858.
EMRULLAHOĞLU M, ÜÇÜNCÜ M, KARAKUŞ E. A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid[J].Chem. Commun., 2013, 49(71):7836-7838.
HU JJ, WONG N K, GU Q S, et al. HKOCl-2 series of green BODIPY-based fluorescent probes for hypochlorous acid detection and imaging in live cells[J].Org. Lett., 2014, 16(13):3544-3547.
ZHANG B B, YANG X P, ZHANG R, et al. Lysosomal-targeted two-photon fluorescent probe to sense hypochlorous acid in live cells[J].Anal. Chem., 2017, 89(19):10384-10390.
GUO T, CUI L, SHEN J N, et al. A dual-emission and large Stokes shift fluorescence probe for real-time discrimination of ROS/RNS and imaging in live cells[J].Chem. Commun., 2013, 49(18):1862-1864.
ZHANG C Y, NIE Q C, ISMAIL I, et al. A highly sensitive and selective fluorescent probe for fast sensing of endogenous HClO in living cells[J].Chem. Commun., 2018, 54(31):3835-3838.
NIU H W, CHEN K K, XU J H, et al. Mitochondria-targeted fluorescent probes for oxidative stress imaging[J].Sens. Actuators B Chem., 2019, 299:126938.
FAN J L, MU H Y, ZHU H, et al. Recognition of HClO in live cells with separate signals using a ratiometric fluorescent sensor with fast response[J].Ind. Eng. Chem. Res., 2015, 54(36):8842-8846.
SONG W H, DONG B L, LU Y R, et al. Development of an endoplasmic reticulum-targeting fluorescent probe for the two-photon imaging of hypochlorous acid (HClO) in living cells[J].Anal. Methods, 2019, 11(35):4450-4455.
HALDAR U, SHARMA R, RUIDAS B, et al. Toward rapid and selective detection of hypochlorous acid in pure aqueous media and its application to cell imaging:BODIPY-derived water-soluble macromolecular chemosensor with high sensitivity[J].Dyes Pigm., 2020, 172:107858.
LIU S Z, YANG D, LIU Y J, et al. A dual-channel and fast-response fluorescent probe for selective detection of HClO and its applications in live cells[J].Sens. Actuators B Chem., 2019, 299:126937.
JIANG C, YAO Y W, KONG C L, et al. A novel colorimetric and ratiometric fluorescent probe for targeted detection of hypochlorous acid based on HClO-mediated anthracene-hydrazone to anthracene-triazole transformation[J].Anal. Methods, 2019, 11(32):4157-4164.
MA Q J, WANG C Y, BAI Y, et al. A lysosome-targetable and ratiometric fluorescent probe for hypochlorous acid in living cells based on a 1, 8-naphthalimide derivative[J].Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 223:117334.
YANG D M, MA P A, HOU Z Y, et al. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery[J].Chem. Soc. Rev., 2015, 44(5):1416-1448.
LIU B, LIC X, YANG P P, et al. 808 nm light-excited lanthanide-doped nanoparticles:rational design, luminescence control and theranostic applications[J].Adv. Mater., 2017, 29(18):1605434-1-24.
HOU Z Y, DENG K R, WANG M F, et al. Hydrogenated titanium oxide decorated upconversion nanoparticles:facile laser modified synthesis and 808 nm nir-light triggered phototherapy[J].Chem. Mater., 2019, 31(3):774-784.
LV G L, SHEN Y, ZHENG W B, et al. Fluorescence detection and dissociation of amyloid-β species for the treatment of Alzheimer's disease[J].Adv. Therap., 2019, 2(9):1900054.
WANG F, WEN S H, HE H, et al.Microscopic inspection and tracking of single upconversion nanoparticles in living cells[J].Light:Sci. Appl., 2018, 7(4):18007-1-6.
WEI P, LIU L Y, WEN Y, et al. Release of amino- or carboxy-containing compounds triggered by HOCl:application for imaging and drug design[J].Angew. Chem. Int. Ed., 2019, 58(14):4547-4551.
WEI P, YUAN W, XUE F F, et al. Deformylation reaction-based probe for in vivo imaging of HOCl[J].Chem. Sci., 2018, 9(2):495-501.
0
Views
34
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution