1.中山大学 化学学院, 广东 广州 510275
2.广东工业大学 分析测试中心, 广东 广州 510006
扫 描 看 全 文
Shao-yun YIN, Jun-ting MO, Mei PAN. One- and Two-photon Excited Photoluminescence of Cuprous Iodide Coordination Polymer. [J]. Chinese Journal of Luminescence 41(7):782-790(2020)
Shao-yun YIN, Jun-ting MO, Mei PAN. One- and Two-photon Excited Photoluminescence of Cuprous Iodide Coordination Polymer. [J]. Chinese Journal of Luminescence 41(7):782-790(2020) DOI: 10.37188/fgxb20204107.0782.
利用两种半柔性的π-不饱和双吡啶端基配体与CuI配位,分别通过结构转化法和原位组装法,得到两种具有{[CuIL]·solvents},n,结构通式的二维和三维碘化亚铜配位聚合物,分别命名为Cu-3和Cu-4。利用X射线单晶衍射、X射线粉末衍射和元素分析等表征方法确定了Cu-3和Cu-4的结构信息。研究这两种配位聚合物的光物理性能发现,用紫外光激发时,Cu-3和Cu-4均表现出单一发射峰,最大波长分别为513 nm的蓝绿光和555 nm的黄色光,归属于卤素到配体的电荷转移(,3,XLCT)。同时,这两种配位聚合物均表现出双光子激发发光性质,有望应用于生物成像领域。
Through structural transition method or ,in-situ, assembly method, two semi-flexible π-conjugated unsaturated bipodal-ligands were coordinated with CuI to obtain 2-D or 3-D cuprous iodide coordination polymerizations with the general structure of {[CuIL]·solvents},n, namely Cu-3 and Cu-4, respectively. The structural information of Cu-3 and Cu-4 was determined by X-ray single crystal diffraction, powder X-ray diffraction and elemental analysis. Studying the photophysical properties of these two coordination polymers revealed that when excited by ultraviolet light, Cu-3 and Cu-4 showed a single emission peak with blue-green light at 513 nm and yellow light at 555 nm, respectively, which were attributed to halogen to ligand charge transfer (,3,XLCT) state. At the same time, these two coordination polymers both exhibit two-photon excited luminescence properties, and are expected to be used in the field of biological imaging.
碘化亚铜配位聚合物卤素到配体电荷转移双光子发光
cuprous iodidecoordination polymerXLCTtwo-photon luminescence
GATHER M C, KÖHNEN A, MEERHOLZ K. White organic light-emitting diodes[J].Adv. Mater., 2011, 23(2):233-248.
MEDISHETTY R, NALLA V, NEMEC L, et al. A new class of lasing materials:intrinsic stimulated emission from nonlinear optically active metal-organic frameworks[J].Adv. Mater., 2017, 29(17):1605637-1-7.
STEINER F, BANGE S, VOGELSANG J, et al. Spontaneous fluctuations of transition dipole moment orientation in OLED triplet emitters[J].J. Phys. Chem. Lett., 2015, 6(6):999-1004.
KOBAYASHI A, KATO M. Stimuli-responsive luminescent copper(I) complexes for intelligent emissive devices[J]. Chem. Lett., 2017, 46(2):154-162.
LIU Z W, QIU J, WEI F, et al. Simple and high efficiency phosphorescence organic light-emitting diodes with codeposited copper(I) emitter[J].Chem. Mater., 2014, 26(7):2368-2373.
JIA H L, QI Y C, WANG X, et al. Water-stable Cd Ⅱ-based metal-organic framework as a reversible luminescent sensor for NFT with excellent recyclability and selectivity[J].Inorg. Chem. Commun., 2020, 111:107668.
DIXIT S, AGARWAL N. Synthesis of imidazoaryl-bodipy derivatives for anion sensing applications[J].J. Photochem. Photobiol. A: Chem., 2017, 343:66-71.
CHEN L, ZHANG H, PAN M, et al. An efficient visible and near-infrared (NIR) emitting SmⅢ metal-organic framework (Sm-MOF) sensitized by excited-state intramolecular proton transfer (ESIPT) ligand[J].Chem. Asian J., 2016, 11(12):1765-1769.
DOTY F P, BAUER C A, SKULAN A J, et al. Scintillating metal-organic frameworks:a new class of radiation detection materials[J].Adv. Mater., 2009, 21(1):95-101.
CHEN C, LI R H, ZHU B S, et al. Highly luminescent inks:aggregation-induced emission of copper-iodine hybrid clusters[J].Angew. Chem. Int. Ed., 2018, 57(24):7106-7110.
KITAGAWA H, OHTSU H, KAWANO M. Kinetic assembly of a thermally stable porous coordination network based on labile CuI units and the visualization of I2 sorption[J].Angew. Chem. Int. Ed., 2013, 52(47):12395-12399.
YU Y, ZHANG X M, MA J P, et al. Cu(I)-MOF:naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion[J].Chem. Commun., 2014, 50(12):1444-1446.
ZHAO C W, MA J P, LIU Q K, et al. An in situ self-assembled Cu4I4-MOF-based mixed matrix membrane:a highly sensitive and selective naked-eye sensor for gaseous HCl[J].Chem. Commun., 2016, 52(30):5238-5241.
NAIK S, MAGUE J T, BALAKRISHNA M S. Short-bite PNP ligand-supported rare tetranuclear[Cu4I4] clusters:structural and photoluminescence studies[J].Inorg. Chem., 2014, 53(7):3864-3873.
PAN M, LIAO W M, YIN S Y, et al. Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies[J].Chem. Rev., 2018, 118(18):8889-8935.
PENG R, LI M, LI D. Copper(I) halides:a versatile family in coordination chemistry and crystal engineering[J].Coord. Chem. Rev., 2010, 254(1-2):1-18.
PARK H, KWON E, CHIANG H, et al. Reversible crystal transformations and luminescence vapochromism by fast guest exchange in Cu(I) coordination polymers[J].Inorg. Chem., 2017, 56(14):8287-8294.
SCHLACHTER A, VIAU L, FORTIN D, et al. Control of structures and emission properties of (CuI) n 2-methyldithiane coordination polymers[J].Inorg. Chem., 2018, 57(21):13564-13576.
LIU W, FANG Y, WEI G Z, et al. A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach[J].J. Am. Chem. Soc., 2015, 137(29):9400-9408.
LIAO W M, LI X N, ZENG Q, et al. Enantiomerism, diastereomerism and thermochromism in two Cu7I4 cluster-based coordination polymers[J].J. Mater. Chem. C, 2019, 7(48):15136-15140.
CHENG Y, XU P, DING Y B, et al. Stoichiometry-dominated in situ formation of iodocuprate clusters and dimethyl-2, 2'-biimidazoles as building units of coordination architectures[J].CrystEngComm, 2011, 13(7):2644-2648.
YU Y D, MENG L B, CHEN Q C, et al. Substituent regulated photoluminescent thermochromism in a rare type of octahedral Cu4I4 clusters[J].New J. Chem., 2018, 42(11):8426-8437.
YU J H, LÜ Z L, XU J Q, et al. Syntheses, characterization and optical properties of some copper(I) halides with 1, 10-phenanthroline ligand[J].New J. Chem., 2004, 28(8):940-945.
JIN F. An excellently stable heterovalent copper-organic framework based on Cu4I4 and Cu(COO)2N2 SBUs:the catalytic performance for CO2 cycloaddition reaction and knoevenagel condensation reaction[J].Inorg. Chem. Commun., 2020, 116:107940.
WU T, LI M, LI D, et al. Anionic CunIn cluster-based architectures induced by in situ generated N-alkylated cationic triazolium salts[J].Cryst. Growth Des., 2008, 8(2):568-574.
LEE E, JU H, JUNG J H, et al. Conventional and mechanochemical syntheses of copper(I) iodide luminescent MOF with bis(Amidoquinoline) and its application for the detection of amino acid in aqueous solution[J].Inorg. Chem., 2019, 58(2):1177-1183.
LIU J H, QI Y J, ZHAO D, et al. Heterometallic organic frameworks built from trinuclear indium and cuprous halide clusters:ligand-oriented assemblies and iodine adsorption behavior[J].Inorg. Chem., 2019, 58(1):516-523.
SHI D Y, ZHENG R, SUN M J, et al. Semiconductive copper(I)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts[J].Angew. Chem. Int. Ed., 2017, 56(46):14637-14641.
PERRUCHAS S, LE GOFF X F, MARON S, et al. Mechanochromic and thermochromic luminescence of a copper iodide cluster[J].J. Am. Chem. Soc., 2010, 132(32):10967-10969.
LIU Z W, QAYYUM M F, WU C, et al. A codeposition route to CuI-pyridine coordination complexes for organic light-emitting diodes[J].J. Am. Chem. Soc., 2011, 133(11):3700-3703.
LEE J Y, LEE S Y, SIM W, et al. Temperature-dependent 3-D CuI coordination polymers of calix [4] -bis -dithiacrown:crystal-to-crystal transformation and photoluminescence change on coordinated solvent removal[J].J. Am. Chem. Soc., 2008, 130(22):6902-6903.
LIU Z M, LIU Y, ZHENG S R, et al. Assembly of trigonal and tetragonal prismatic cages from octahedral metal ions and a flexible molecular clip[J].Inorg. Chem., 2007, 46(15):5814-5816.
YIN S Y, WANG Z, LIU Z M, et al. Multiresponsive UV-one-photon absorption, near-infrared-two-photon absorption, and X/γ-photoelectric absorption luminescence in one[Cu4I4] compound[J].Inorg. Chem., 2019, 58(16):10736-10742.
0
Views
28
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution