浏览全部资源
扫码关注微信
1.阿威罗大学 物理系和 CICECO⁃阿威罗材料研究所, 阿威罗, 葡萄牙, 3810-193
2.南卫理公会大学 化学系, 达拉斯, 美国, 75275⁃0314
3.帕拉伊巴联邦大学 化学与物理系, 阿雷亚, 巴西, 58397⁃000
4.伯南布哥联邦大学 基础化学系, 累西腓, 巴西, 50740⁃560
5.伯南布哥联邦大学 材料科学研究生院, 累西腓, 巴西, 50670⁃901
[ "Albano N. Carneiro Neto (1985-), received his Ph.D. in Chemistry from Federal University of Pernambuco (Brazil) in 2018, started as a pos⁃doc from 2019 to 2021 at University of Aveiro (Portugal) and nowadays he is a Researcher at the Physics Department and CICECO⁃Aveiro Institute of Materials, University of Aveiro. He acted as guest editor of Journal of Luminescence in 2018 and he is a member of the topical advisory panel of Applied Sciences. His scientific interests are lanthanides chemistry; quantum chemistry calculations; covalency and chemical bonding; thermometry; f⁃f intensities; Judd⁃Ofelt theory; ligand⁃ and lanthanide⁃to⁃lanthanide energy transfer. He authored 47 papers in international journals and 04 book chapters. According to Google Scholar (November 2022), he has more than 920 citations with an h⁃index of 18. E-mail: albanoneto@ua.pt " ]
[ "Oscar L. Malta (1954-), Ph.D. at Université Pierre et Marie Curie-Paris 6 (France, 1981). He is a Full Professor in the Department of Fundamental Chemistry of the UFPE (Brazil), researcher 1A of the National Council of Scientific and Technological Development, and member of the Brazilian Academy of Science. He was awarded the Prof. Ricardo Ferreira Award for Scientific Merit (granted by Pernambuco State Foundation for Science and Technology) and the Prof. Paulo Duarte medal (granted by The Brazilian Association of Chemistry). Received the medal of the National Order of the Scientific Merit (Brazilian Government, 2018). He had a Special Issue in the Journal of Luminescence dedicated to his 60s. He was the Chairman of the 18th International Conference on Luminescence, ICL-2017. He is Doctor Honoris Causa by the University of Wrocław. His research interests are in Chemistry and Physics, with emphasis on atomic and molecular spectroscopy, compounds with lanthanide ions, and nanostructured materials.oscar. malta@ufpe. br" ]
[ "Ricardo L. Longo (1964-), Ph. D. from University of Florida(USA, 1993)and pos-doc at the QuantumTheory Project(U. of Florida). Since 1994 he is a professor at the Department of Fundamental Chemistry, Federal University at Pernambuco, Recife, Brazil. He was a visiting at McGill University, Montrèal,Canada(2016)and visiting consultant at University of Aveiro, Portugal(2019). Served as associate editor of Journal of the Brazilian Chemical Society(2006-2012)and guest editor of Journal of Luminescence (2016 and 2018). He is an advisor/reviewer in Brazilian funding agencies(CAPES, FACEPE). His scientific interests cover the development of theoretical and computational methods to physical chemistry, particularly to molecular spectroscopy, thermometry, chemical reactions, hydrogen bonded systems and complex networks. Supervised 10 post-docs, 22 Ph. D. , 21 MSc, and 26 undergraduate students in the Chemistry and Materials Science Programs. Currently, he is supervising 08 Ph. D. and 04 MSc students. He au‑thored 04 book chapters and about 110 papers.ricardo. longo@ufpe. br" ]
Published:05 December 2022,
Received:20 May 2022,
Revised:19 June 2022,
移动端阅览
Albano N Carneiro Neto,Renaldo T Moura Jr,Jorge A A Coelho等.镧系离子间无辐射能量传递速率的教程综述[J].发光学报,2022,43(12):1871-1891.
Neto Albano N Carneiro,Moura Renaldo T,Coelho Jorge A A,et al.A Tutorial Review on the Nonradiative Energy Transfer Rates between Lanthanide Ions[J].Chinese Journal of Luminescence,2022,43(12):1871-1891.
Albano N Carneiro Neto,Renaldo T Moura Jr,Jorge A A Coelho等.镧系离子间无辐射能量传递速率的教程综述[J].发光学报,2022,43(12):1871-1891. DOI: 10.37188/CJL.EN20220007.
Neto Albano N Carneiro,Moura Renaldo T,Coelho Jorge A A,et al.A Tutorial Review on the Nonradiative Energy Transfer Rates between Lanthanide Ions[J].Chinese Journal of Luminescence,2022,43(12):1871-1891. DOI: 10.37188/CJL.EN20220007.
在本教程综述中,我们重新阐述和表达了镧系离子间无辐射能量传递(ET) 速率的理论形式,并且强调了考虑镧系离子本身特异性所引发的与 Förster 和 Dexter 理论不同之处。所给出的表达式遵循了Judd‑Ofelt的4f‑4f跃迁理论框架之下的 Kushida 方法,并计入了如下电多极机制:偶极‑偶极(
<math id="M6"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi mathvariant="normal">‑</mi><mi mathvariant="normal">d</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818873&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818872&type=
4.99533367
3.21733332
)、偶极‑四极(
<math id="M7"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi mathvariant="normal">‑</mi><mi mathvariant="normal">q</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818877&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818876&type=
4.99533367
3.21733332
)和四极-四极(
<math id="M8"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">q</mi><mi mathvariant="normal">‑</mi><mi mathvariant="normal">q</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818882&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818880&type=
4.99533367
3.21733332
)。更为重要的是,当前的机制也扩展包括了交换(
<math id="M9"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">e</mi><mi mathvariant="normal">x</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818887&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818884&type=
4.23333359
3.21733332
)和磁偶极子⁃磁偶极子(
<math id="M10"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">d</mi><mi mathvariant="normal">⁃</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">d</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818892&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818888&type=
7.45066643
3.21733332
)作用,并经过改进进一步包含了屏蔽效应以及给出了
F
因子(费米黄金规则中的态密度)的解析表达式。与 Kushida 的原始方法类似,我们只考虑了强制电偶极子 (FED) 对 Judd⁃Ofelt 强度参数的贡献,并细节性地讨论了磁偶极⁃磁偶极相互作用的选择定则以及相关矩阵元的计算。此外,我们还以Tb(Ⅲ)‑Eu(Ⅲ) 和 Yb(Ⅲ)⁃Er(Ⅲ) 的能量传递速率计算为例,逐步展示了计算过程、主要的计算支撑信息以及所使用的计算脚本。
In this tutorial review, we present nonradiative energy transfer(ET) rates between lanthanides in a rearranged form. We emphasize the nature of the contributions which are different from those developed by Förster and Dexter theories because of the unique properties of the lanthanide ions. The expressions discussed here were based on Kushida's approach (electric multipolar mechanisms: dipole‑dipole(
<math id="M1"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi mathvariant="normal">‑</mi><mi mathvariant="normal">d</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818858&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818856&type=
4.99533367
3.21733332
), dipole‑quadrupole(
<math id="M2"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi mathvariant="normal">‑</mi><mi mathvariant="normal">q</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818861&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818859&type=
4.99533367
3.21733332
), and quadrupole‑quadrupole(
<math id="M3"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">q</mi><mi mathvariant="normal">‑</mi><mi mathvariant="normal">q</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818864&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818863&type=
4.99533367
3.21733332
)) within the Judd-Ofelt framework for 4f-4f transitions. Notice that these mechanisms were extended to include the exchange(
<math id="M4"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">e</mi><mi mathvariant="normal">x</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818867&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818866&type=
4.23333359
3.21733332
) and magnetic dipole‑magnetic dipole mechanisms(
<math id="M5"><msub><mrow><mi>W</mi></mrow><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">d</mi><mi mathvariant="normal">‑</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">d</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818870&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39818869&type=
7.45066643
3.21733332
), and were improved to include shielding effects as well as an analytical expression for the
F
-factor (density of states in Fermi’s golden rule). Similar to the original approach of Kushida, only the Forced Electric Dipole(FED) contributions to the Judd-Ofelt intensity parameters should be considered. A detailed discussion of selection rules and matrix elements calculations for the magnetic dipole‑magnetic dipole interaction is presented. In addition, step-by-step examples of Tb(Ⅲ)-Eu(Ⅲ) and Yb(Ⅲ)-Er(Ⅲ) energy transfer rates calculations are provided, with extensive Supporting Information, including scripts for calculations.
无辐射能量传递镧系理论计算Ln-Ln 能量传递速率选择定则
nonradiative energy transferlanthanidestheoretical calculationsLn-Ln energy transfer ratesselection rules
JAHNKE T, SANN H, HAVERMEIER T, et al. Ultrafast energy transfer between water molecules [J]. Nat. Phys., 2010, 6(2): 139-142.
XUAN M J, ZHAO J, SHAO J X, et al. Perspective of energy transfer from light energy into biological energy [J]. Green Energy Environ., 2017, 2(1): 18-22.
XU W L, BONY B A, KIM C R, et al. Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine [J]. Sci. Rep., 2013, 3: 3210-1-10.
WIESZCZYCKA K, STASZAK K, WOŹNIAK-BUDYCH M J, et al. Lanthanides and tissue engineering strategies for bone regeneration [J]. Coord. Chem. Rev., 2019, 388: 248-267.
ZHANG Y, WEI W, DAS G K, et al. Engineering lanthanide-based materials for nanomedicine [J]. J. Photochem. Photobiol. C: Photochem. Rev., 2014, 20: 71-96.
RAMALHO J F C B, DIAS L M S, FU L S, et al. Customized luminescent multiplexed quick-response codes as reliable temperature mobile optical sensors for ehealth and internet of things [J]. Adv. Photonics Res., 2022, 3(6): 2100206-1-11.
DE CARVALHO M A, TALHAVINI M, PIMENTEL M F, et al. NIR hyperspectral images for identification of gunshot residue from tagged ammunition [J]. Anal. Methods, 2018, 10(38): 4711-4717.
ZHOU B, YAN L, HUANG J S, et al. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice [J]. Nat. Photonics, 2020, 14(12): 760-766.
FAN J Y, LIANG L L, GU Y Y, et al. (INVITED) Opposing effects of energy migration and cross-relaxation on surface sensitivity of lanthanide-doped nanocrystals [J]. Opt. Mater. X, 2021, 12: 100104.
BETTINELLI M, CARLOS L, LIU X G. Lanthanide-doped upconversion nanoparticles [J]. Phys. Today, 2015, 68(9): 38-44.
STREK W. Concentration dependence of the phonon-assisted energy transfer between rare-earth ions [J]. Phys. Rev. B, 1984, 29(12): 6957-6962.
AUZEL F. History of upconversion discovery and its evolution [J]. J. Lumin., 2020, 223: 116900-1-7.
AUZEL F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104(1): 139-174.
DONG H, SUN L D, YAN C H. Energy transfer in lanthanide upconversion studies for extended optical applications [J]. Chem. Soc. Rev., 2015, 44(6): 1608-1634.
NONAT A, LIU T, JEANNIN O, et al. Energy transfer in supramolecular heteronuclear lanthanide dimers and application to fluoride sensing in water [J]. Chem.⁃A Eur. J., 2018, 24(15): 3784-3792.
QIN X, NETO A N C, LONGO R L, et al. Surface plasmon⁃photon coupling in lanthanide-doped nanoparticles [J]. J. Phys. Chem. Lett., 2021, 12(5): 1520-1541.
ZOU K S, GUO H T, LU M, et al. Broad-spectrum and long-lifetime emissions of Nd3+ ions in lead fluorosilicate glass [J]. Opt. Express, 2009, 17(12): 10001-10009.
IRFANULLAH M, IFTIKHAR K. The correlation between f⁃f absorption and sensitized visible light emission of luminescent Pr(Ⅲ) complexes: role of solvents and ancillary ligands on sensitivity [J]. J. Fluoresc., 2011, 21(2): 673-686.
HATANAKA M, YABUSHITA S. Theoretical study on the f⁃f transition intensities of lanthanide trihalide systems [J]. J. Phys. Chem. A, 2009, 113(5): 12615-12625.
NETO A N C, TEOTONIO E E S, DE SÁ G F, et al. Modeling intramolecular energy transfer in lanthanide chelates: a critical review and recent advances [J]. Handb. Phys. Chem. Rare Earths, 2019, 56: 55-162.
SCHATZ G C, RATNER M A. Quantum Mechanics in Chemistry [M]. Mineola: Dover Publications, Inc., 2002.
ATKINS P, FRIEDMAN R. Molecular Quantum Mechanics [M]. New York: Oxford University Press, 2005.
JUDD B R. Operator Techniques in Atomic Spectroscopy [M]. Princeton: Princeton University Press, 1998.
FORSTER T. Energiewanderung und fluoreszenz [J]. Naturwissenschaften, 1946, 33(6): 166-175.
DEXTER D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21(5): 836-850.
NASIRI S, BUBIN S, ADAMOWICZ L. Treating the motion of nuclei and electrons in atomic and molecular quantum mechanical calculations on an equal footing: non⁃Born⁃Oppenheimer quantum chemistry [M]. RUUD K, BRÄNDAS E J. Chemical Physics and Quantum Chemistry. Cambridge, Massachusetts: Academic Press Inc., 2020: 143-166.
WOOLLEY R G, SUTCLIFFE B T. Molecular structure and the Born⁃Oppenheimer approximation [J]. Chem. Phys. Lett., 1977, 45(2): 393-398.
PRAVEEN V K, RANJITH C, BANDINI E, et al. Oligo(phenylenevinylene) hybrids and self-assemblies: versatile materials for excitation energy transfer [J]. Chem. Soc. Rev., 2014, 43(12): 4222-4242.
OH J M, VENTERS C C, DI C, et al. U1 snRNP regulates cancer cell migration and invasion in vitro [J]. Nat. Commun., 2020, 11(1): 1-1-8.
KASPRZYCKA E, NETO A N C, TRUSH V A, et al. [J]. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2022: 121072.
LYUBOV D M, NETO A N, FAYOUMI A, et al. Employing three-blade propeller lanthanide complexes as molecular luminescent thermometers: study of temperature sensing through a concerted experimental/theory approach [J]. J. Mater. Chem. C, 2022, 10(18): 7176-7188.
MALTA O L. Ligand—rare-earth ion energy transfer in coordination compounds. A theoretical approach [J]. J. Lumin., 1997, 71(3): 229-236.
MALTA O L, SILVA F R G E, LONGO R. On the dependence of the luminescence intensity of rare-earth compounds with pressure: a theoretical study of Eu(TTF)32H2O in polymeric solution and crystalline phases [J]. Chem. Phys. Lett., 1999, 307(5-6): 518-526.
MALTA O L. Mechanisms of non-radiative energy transfer involving lanthanide ions revisited [J]. J. Non.⁃Cryst. Solids, 2008, 354(42-44): 4770-4776.
NETO A N C, MOURA R T J R, MALTA O L. On the mechanisms of non-radiative energy transfer between lanthanide ions: centrosymmetric systems [J]. J. Lumin., 2019, 210: 342-347.
NETO A N C, MOURA R T J R, SHYICHUK A, et al. Theoretical and experimental investigation of the Tb3+ → Eu3+ energy transfer mechanisms in cubic A3Tb0.90Eu0.10(PO4)3 (A = Sr, Ba) materials [J]. J. Phys. Chem. C, 2020, 124(18): 10105-10116.
TRANNOY V, NETO A N C, BRITES C D S, et al. Engineering of mixed Eu3+ /Tb3+ metal-organic frameworks luminescent thermometers with tunable sensitivity [J]. Adv. Opt. Mater., 2021, 9(6): 2001938-1-12.
KUSHIDA T. Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. transition probability calculation [J]. J. Phys. Soc. Japan, 1973, 34(5): 1318-1326.
JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3): 750-761. doi: 10.1103/physrev.127.750http://dx.doi.org/10.1103/physrev.127.750
OFELT G S. Intensities of crystal spectra of rare‐earth ions [J]. J. Chem. Phys., 1962, 37(3): 511-520. doi: 10.1063/1.1701366http://dx.doi.org/10.1063/1.1701366
MALTA O L, SILVA F R G E. A theoretical approach to intramolecular energy transfer and emission quantum yields in coordination compounds of rare earth ions [J]. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 1998, 54(11): 1593-1599. doi: 10.1016/S1386-1425(98)00086-9http://dx.doi.org/10.1016/S1386-1425(98)00086-9
FANO U, RACAH G. Irreducible Tensorial Sets [M]. New York: Academic Press Inc., 1959.
NETO A N C, MAMONTOVA E, BOTAS A M P, et al. Rationalizing the thermal response of dual-center molecular thermometers: the example of an Eu/Tb coordination complex [J]. Adv. Opt. Mater., 2022, 10(5): 2101870.
CODATA Value: electron g factor. The NIST reference on constants, units, and uncertainty [EB/OL]. [2022⁃06⁃19]. https://physics.nist.gov/cgi-bin/cuu/Value?gemhttps://physics.nist.gov/cgi-bin/cuu/Value?gem.
BINNEMANS K. Interpretation of europium(Ⅲ) spectra [J]. Coord. Chem. Rev., 2015, 295: 1-45.
CARNALL W T, FIELDS P R, RAJNAK K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ [J]. J. Chem. Phys., 1968, 49(10): 4424-4442. doi: 10.1063/1.1669895http://dx.doi.org/10.1063/1.1669895
CARNALL W T, CROSSWHITE H, CROSSWHITE H M. Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF₃ [R]. Argonne: Argonne National Lab, 1978.
OFELT G S. Structure of the f 6 configuration with application to rare‐earth ions [J]. J. Chem. Phys., 1963, 38(9): 2171-2180.
RAJNAK K. Configuration-interaction effects on the “free-ion” energy levels of Nd3+ and Er3+ [J]. J. Chem. Phys., 1965, 43(5): 847-855.
WYBOURNE B G. Structure of f n configurations. II. f 5 and f 9 configurations [J]. J. Chem. Phys., 1962, 36(9): 2301-2311.
NETO A N C, KASPRZYCKA E, SOUZA A S, et al. On the long decay time of the 7F5 level of Tb3+ [J]. J. Lumin., 2022, 248: 118933.
EDVARDSSON S, KLINTENBERG M. Role of the electrostatic model in calculating rare-earth crystal-field parameters [J] J. Alloys Compd., 1998, 275-277: 230-233.
NETO A N C, MOURA R T JR. Overlap integrals and excitation energies calculations in trivalent lanthanides 4f orbitals in pairs Ln-L (L = Ln, N, O, F, P, S, Cl, Se, Br, and I) [J]. Chem. Phys. Lett., 2020, 757: 137884-1-6.
MALTA O L, BRITO H F, MENEZES J F S, et al. Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model [J]. J. Lumin., 1997, 75(3): 255-268.
MALTA O L. Theoretical crystal-field parameters for the YOCl∶Eu3+ system. A simple overlap model [J]. Chem. Phys. Lett., 1982, 88(3): 353-356.
PATERLINI V, PICCINELLI F, BETTINELLI M. Tb3+→Eu3+ energy transfer processes in eulytite A3Tb(PO4)3 (A=Sr, Ba) and silico-carnotite Ca3Tb2Z3O12(Z=Si, Ge) materials doped with Eu3+ [J]. Phys. B: Condens. Matter, 2019, 575: 411685-1-5. doi: 10.1016/j.physb.2019.411685http://dx.doi.org/10.1016/j.physb.2019.411685
TANNER P A, CHUA M, REID M F. Energy transfer by magnetic dipole⁃magnetic dipole interaction [J]. Chem. Phys. Lett., 1993, 209(5-6): 539-546.
CHUA M, TANNER P A, REID M F. Energy transfer by electric dipole-magnetic dipole interaction in cubic crystals [J]. Solid State Commun., 1994, 90(9): 581-583.
MALTA O L. Energy transfer between molecules and small metallic particles [J]. Phys. Lett. A, 1986, 114(4): 195-197.
SMENTEK L, KĘDZIORSKI A. Efficiency of the energy transfer in lanthanide-organic chelates; spectral overlap integral [J]. J. Lumin., 2010, 130(7): 1154-1159.
BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988, 38(6): 3098-3100.
PERDEW J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Phys. Rev. B, 1986, 33(12): 8822-8824.
VAN LENTHE E, BAERENDS E J. Optimized Slater-type basis sets for the elements 1-118 [J]. J. Comput. Chem., 2003, 24(9): 1142-1156.
VAN LENTHE E, SNIJDERS J G, BAERENDS E J. The zero‐order regular approximation for relativistic effects: the effect of spin⁃orbit coupling in closed shell molecules [J]. J. Chem. Phys., 1996, 105(15): 6505-6516.
VAN LENTHE E, EHLERS A, BAERENDS E J. Geometry optimizations in the zero order regular approximation for relativistic effects [J]. J. Chem. Phys., 1999, 110(18): 8943-8953.
VELDE GTE, BICKELHAUPT F M, BAERENDS E J, et al. Chemistry with ADF [J]. J. Comput. Chem., 2001, 22(9): 931-967.
MOURA R T JR, NETO A N C, LONGO R L, et al. On the calculation and interpretation of covalency in the intensity parameters of 4f⁃4f transitions in Eu3+ complexes based on the chemical bond overlap polarizability [J]. J. Lumin., 2016, 170: 420-430.
AQUINO L EDO N, BARBOSA G A, DE L RAMOS J, et al. Seven-coordinate Tb3+ complexes with 90% quantum yields: high-performance examples of combined singlet- and triplet-to-Tb3+ energy-transfer pathways [J]. Inorg. Chem., 2021, 60(2): 892-907.
MOURA R T JR, OLIVEIRA J A, SANTOS I A, et al. Theoretical evidence of the singlet predominance in the intramolecular energy transfer in ruhemann's purple Tb(Ⅲ) complexes [J]. Adv. Theory Simul., 2021, 4(3): 2000304-1-10.
MALTA O L. A simple overlap model in lanthanide crystal-field theory [J]. Chem. Phys. Lett., 1982, 87(1): 27-29.
MOURA R T JR, NETO A N C, AGUIAR E C, et al. (INVITED) JOYSpectra: A web platform for luminescence of lanthanides [J]. Opt. Mater. X, 2021, 11: 100080.
ASSUNÇÃO I P, NETO A N C, MOURA R T JR, et al. Odd-even effect on luminescence properties of europium aliphatic dicarboxylate complexes [J]. ChemPhysChem, 2019, 20(15): 1931-1940.
SHYICHUK A, MOURA R T JR, NETO A N C, et al. Effects of dopant addition on lattice and luminescence intensity parameters of Eu(Ⅲ)-doped lanthanum orthovanadate [J]. J. Phys. Chem. C, 2016, 120(50): 28497-28508.
GRZYB T, SZCZESZAK A, SHYICHUK A, et al. Comparative studies of structure, spectroscopic properties and intensity parameters of tetragonal rare earth vanadate nanophosphors doped with Eu(Ⅲ) [J]. J. Alloys Compd., 2018, 741: 459-472.
SHYICHUK A, CÂMARA S S, WEBER I T, et al. Energy transfer upconversion dynamics in YVO4∶Yb3+,Er3+ [J]. J. Lumin., 2016, 170: 560-570.
NETO A N C, MOURA R T JR, AGUIAR E C, et al. Theoretical study of geometric and spectroscopic properties of Eu(Ⅲ) complexes with Ruhemann's Purple ligands [J]. J. Lumin., 2018, 201: 451-459.
AUZEL F. Compteur quantique par transfert denergie de Yb3+ a Tm3+ dans un tungstate mixte et dans un verre germanate[J]. Acad. des Sci. Ser. B, 1966, 263: 819.
AUZEL F. Upconversion processes in coupled ion systems [J]. J. Lumin., 1990, 45(1-6): 341-345.
YE Y S, JIANG Z H, WANG Q Z, et al. Upconversion luminescence of NaYF4∶Yb,Er nanocrystals with high uniformity [J]. J. Rare Earths, 2014, 32(9): 802-805.
SUN Y J, CHEN Y, TIAN L J, et al. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4∶Yb, Er nanocrystals [J]. Nanotechnology, 2007, 18(27): 275609-1-9.
LIU M, SHI Z Y, WANG X, et al. Simultaneous enhancement of red upconversion luminescence and CT contrast of NaGdF4∶Yb,Er nanoparticles via Lu3+ doping [J]. Nanoscale, 2018, 10(43): 20279-20288.
LI L, LIN H H, ZHAO X Q, et al. Effect of Yb3+ concentration on upconversion luminescence in Yb3+, Tm3+ co-doped Lu2O3 nanophosphors [J]. J. Alloys Compd., 2014, 586: 555-560.
LIANG L L, TEH D B L, DINH N D, et al. Upconversion amplification through dielectric superlensing modulation [J]. Nat. Commun., 2019, 10(1): 1391.
TU L P, LIU X M, WU F, et al. Excitation energy migration dynamics in upconversion nanomaterials [J]. Chem. Soc. Rev., 2015, 44(6): 1331-1345.
0
Views
507
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution