Your Location:
Home >
Browse articles >
Preparation and Photoluminescence Performance Modulation of Mn2+ Doped Quasi-2D Perovskite
Synthesis and Properties of Materials | Updated:2024-10-31
    • Preparation and Photoluminescence Performance Modulation of Mn2+ Doped Quasi-2D Perovskite

      Enhanced Publication
    • The latest research breakthrough is the preparation of Mn2+doped Q-2D lead halide perovskite materials using room temperature anti solvent method, which significantly improves the luminescence efficiency and provides new ideas for the research of high luminescence efficiency halide perovskites.
    • ZHU Kexin

      1 ,  

      LI Jing

      1 ,  

      CHEN Yibo

      2 ,  

      PANG Qi

      1 ,  
    • Chinese Journal of Luminescence   Vol. 45, Issue 10, Pages: 1647-1655(2024)
    • DOI:10.37188/CJL.20240163    

      CLC: O482.31;TQ460.1
    • Published:26 October 2024

      Received:02 July 2024

      Revised:15 July 2024

    Scan QR Code

  • Cite this article

    PDF

  • ZHU KEXIN, LI JING, CHEN YIBO, et al. Preparation and Photoluminescence Performance Modulation of Mn2+ Doped Quasi-2D Perovskite. [J]. Chinese journal of luminescence, 2024, 45(10): 1647-1655. DOI: 10.37188/CJL.20240163.

  •  
  •  

    1 引言

    介绍了准二维有机-无机卤化铅钙钛矿因其可调带隙、窄带发射和良好稳定性而受到关注。与三维和二维钙钛矿相比,准二维钙钛矿具有更好的环境稳定性、更大的激子结合能和天然的量子阱结构,同时具有更高的光吸收效率。然而,准二维钙钛矿中长链有机间隔阳离子之间的钙钛矿层数不单一,导致发光效率较低,且晶粒尺寸减小会增加表面缺陷和非辐射复合几率。离子掺杂是调节钙钛矿光电性质的有效手段,Mn2+掺杂半导体纳米材料的独特光学和磁光特性受到关注,能有效钝化钙钛矿材料表面的缺陷,提升光致发光量子效率(PLQY),并带来新的发光特性。本工作使用反溶剂法制备了一系列Mn2+掺杂Q-2D钙钛矿粉末,探讨了掺杂不同含量的Mn2+后Q-2D钙钛矿的物相结构和光学性能变化。结构分析表明Mn2+成功掺杂进Q-2D钙钛矿中,掺杂后的Q-2D钙钛矿在365 nm光激发下呈现多个n相的激子发射和位于610 nm的Mn2+离子的橙色发射,PLQY从1.49%提升到50.25%。文章进一步讨论了Q-2D钙钛矿的发光机理,探讨了发光效率提高的原因,为提高Q-2D钙钛矿的发光效率和发光颜色调控提供了新思路。

    2 实验

    介绍了Mn2+掺杂准二维钙钛矿的制备及发光性能调控实验。实验中使用了溴化铅、溴化锰等材料,通过苯乙基溴化胺(PEABr)粉末制备、(PEA)2MAPb2Br7∶Mn钙钛矿材料前驱体溶液制备和Q-2D钙钛矿合成三个步骤,制备出不同Mn2+离子含量的Q-2D钙钛矿样品。采用XRD、SEM、XPS、ICP、EPR等仪器对材料的结构和化学组成进行表征分析,利用紫外-可见吸收光谱、荧光发射光谱、PLQY、TRPL、温度依赖性荧光光谱等方法对材料的发光性质进行表征。

    3 结果与讨论

    详细描述了通过室温反溶剂法合成的Mn2+掺杂准二维钙钛矿的结构和形貌。XRD图谱显示,随着Mn2+离子掺杂量的增加,3D钙钛矿的特征逐渐消失,2D特征衍射峰保留,表明Mn2+离子掺杂导致晶格收缩。EPR谱图证实了Mn2+离子成功掺杂进钙钛矿晶格中,且不存在较强的Mn-Mn相互作用。SEM图像显示,掺杂Mn2+后,钙钛矿形貌更接近2D钙钛矿结构。EDS和ICP-OES分析确认了元素的均匀分布和实际掺杂含量。XPS分析揭示了Mn2+掺杂前后钙钛矿的化学成分和电子特性变化,证实了Mn—Br键的存在。

    紫外-可见吸收光谱显示,Mn2+掺杂并未破坏Q-2D钙钛矿的结构,且随着Mn2+离子掺杂含量的提高,带隙变宽,吸收带边发生蓝移。荧光发射光谱显示,Mn2+掺杂后,3D钙钛矿的带边发光和Q-2D钙钛矿中激子发射强度降低,而Mn2+离子的发射峰增强。PLQY测试表明,掺杂后钙钛矿的PLQY显著提高。时间分辨荧光光谱显示,随着Mn2+掺杂量的提高,激子峰荧光寿命变化与荧光发射光谱的变化相吻合,Mn2+发射的荧光寿命增加,表明Mn-Mn相互作用降低了PL衰减动力学。

    变温荧光光谱测试表明,Q-2D钙钛矿中3D相钙钛矿结构对热敏感,而2D相钙钛矿结构更稳定。Mn2+离子发射峰随着温度的升高向较短的波长偏移,表明宿主晶格热膨胀导致晶体场强度减弱。通过玻尔兹曼分析和FWHM拟合,计算出激子转移到Mn2+所需的热活化能和电子-声子耦合效应,结果表明掺杂Mn2+离子能够提高Q-2D钙钛矿的热稳定性。

    最后,提出了Mn2+离子掺杂Q-2D钙钛矿的发光机理,即在紫外光激发下,电子从基态跃迁至激发态,Mn2+离子掺杂后,抑制了3D钙钛矿的合成,增加了Q-2D钙钛矿中2D钙钛矿的比例,使得2D钙钛矿的发光增强;同时,有更多的激子能量转移到Mn2+离子使其d-d跃迁发射增强,实现明亮的橙色发射。

    4 结论

    采用室温反溶剂法成功制备了Mn2+离子掺杂的Q-2D钙钛矿(PEA)2-MAPb2Br7∶x%Mn,通过XRD、XPS、EPR等表征证实了Mn2+离子的掺杂。掺杂后PL光谱出现610 nm的强橙色发射,PLQY从1.49%提高到50.25%。Mn2+掺杂抑制了3D钙钛矿结构,提高了2D钙钛矿比例,增强了量子限域效应,促进了能量向Mn2+离子的高效转移,实现了明亮橙色发射。该工作为制备高发光效率的金属离子掺杂Q-2D钙钛矿提供了简单快捷的方法,对推动高发光效率钙钛矿材料的发展具有重要意义。

    * The above content is automatically generated by AI and is for reference only. This website does not assume any commercial or legal responsibility for the consequences arising from the use of the following content on this website.

    400

    Views

    127

    Downloads

    0

    CSCD

    Alert me when the article has been cited
    Submit
    Tools
    Download
    Export Citation
    Share
    Add to favorites
    Add to my album

    Related Articles

    Temperature-dependent Luminescence Spectra of Ruddlesden-Popper Quasi-2D Perovskites
    CVD Synthesis of Doped BNx-graphene Hybrid Nanomaterials: Structure and Photoluminescence Properties
    Preparation of La2(MoO4)3 by A Simple Microemulsion Method and Its Photoluminescence Properties

    Related Author

    CHEN Yibo
    LI Jing
    ZHU Kexin
    HUANG Sihao
    LUO Jiajun
    HU Zhiping
    DU Hainan
    DU Zixiao

    Related Institution

    Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology
    State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences
    School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, UCAS
    Materials and Optoelectronics Research Center, University of Chinese Academy of Sciences
    College of Mathematics and Physics, Huaiyin Institute of Technology
    0