1.南京理工大学 材料科学与工程学院, 江苏 南京 210094
扫 描 看 全 文
韩继光,柴英俊,李晓明.直接型卤素钙钛矿X射线探测器结构设计研究进展[J].发光学报,
HAN Jiguang,CHAI Yingjun,LI Xiaoming.Research progress on the structure design of direct halogen perovskite X-ray detectors[J].Chinese Journal of Luminescence,
韩继光,柴英俊,李晓明.直接型卤素钙钛矿X射线探测器结构设计研究进展[J].发光学报, DOI:10.37188/CJL.20230239
HAN Jiguang,CHAI Yingjun,LI Xiaoming.Research progress on the structure design of direct halogen perovskite X-ray detectors[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230239
X射线探测技术在医疗诊断、安防检测和科学研究等领域有着广泛的应用,直接型X射线探测器拥有更高的理论探测效率、空间和能量分辨率,受到了国内外的广泛关注。钙钛矿材料因其X射线衰减系数大、体电阻率高、光学带隙合适以及易大面积制造等优势,成为直接型X射线探测器的理想材料。随着对探测性能的需求的不断提高,合理的器件结构设计显得尤为重要。本文从电极工程和能带工程两个方面出发,综述了有关直接型钙钛矿X射线探测器器件结构设计的最新进展。最后,我们对这些研究进展进行了总结,并对未来的发展进行了展望。我们希望这篇综述能为研究者们提供参考和启发。
X-ray detection technology has been widely used in medical diagnosis, security detection and scientific research, The direct X-ray detector has higher theoretical detection efficiency, space and energy resolution, and has been widely concerned at home and abroad. Perovskite is an Ideal material for direct X-ray detectors because of its large attenuation coefficient, high bulk resistivity, suitable optical band gap and easy large area fabrication. With the increasing demand for detection performance, reasonable device structure design is particularly important. This review introduces the research progress of perovskite direct X-ray detectors from two perspectives: electrode engineering and energy band engineering. Finally, we summarize the research progress and present our views on its future development. We hope this review will provide reference and inspiration for researchers.
钙钛矿X射线探测器器件结构电极工程能带工程异质结
perovskite X-ray detectorDevice structureElectrode engineeringEnergy band engineeringheterojunction
AKCAY S, BRECKON T. Towards automatic threat detection: A survey of advances of deep learning within X-ray security imaging. Pattern Recognition, 2022, 122: 1-12. doi: 10.1016/j.patcog.2021.108245http://dx.doi.org/10.1016/j.patcog.2021.108245
ZHE D, HU Y, BUTTAR A N, et al. X-ray computed tomography for quality inspection of agricultural products: A review. Food Sci Nutr, 2019, 7(10): 3146-3160. doi: 10.1002/fsn3.1179http://dx.doi.org/10.1002/fsn3.1179
OVERDICK M, BAUMER C, ENGEL K, et al. Status of Direct Conversion Detectors for Medical Imaging With X-Rays. IEEE Transactions on Nuclear Science, 2009, 56(4): 1800-1809. doi: 10.1109/tns.2009.2025041http://dx.doi.org/10.1109/tns.2009.2025041
BASIRICO L, CIAVATTI A, FRABONI B. Solution-Grown Organic and Perovskite X-Ray Detectors: A New Paradigm for the Direct Detection of Ionizing Radiation. Advanced Materials Technologies, 2021, 6(1): 2000475-1-26. doi: 10.1002/admt.202000475http://dx.doi.org/10.1002/admt.202000475
JANA A, CHO S, PATIL S A, et al. Perovskite: Scintillators, direct detectors, and X-ray imagers. Materials Today, 2022, 55: 110-136. doi: 10.1016/j.mattod.2022.04.009http://dx.doi.org/10.1016/j.mattod.2022.04.009
ZHOU Y, CHEN J, BAKR O, et al. Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors. ACS Energy Letters, 2021, 6(2): 739-768. doi: 10.1021/acsenergylett.0c02430http://dx.doi.org/10.1021/acsenergylett.0c02430
LIU J, ZHAO X, XU Y, et al. All‐Inorganic Glass Scintillators: Scintillation Mechanism, Materials, and Applications. Laser & Photonics Reviews, 2023, 17(7): 2300006-1-23. doi: 10.1002/lpor.202300006http://dx.doi.org/10.1002/lpor.202300006
XU X, QIAN W, XIAO S, et al. Halide perovskites: A dark horse for direct X-ray imaging. Ecomat, 2020, 2(4): 12064-1-25. doi: 10.1002/eom2.12064http://dx.doi.org/10.1002/eom2.12064
GHOSH J, SELLIN P J, GIRI P K. Recent advances in lead-free double perovskites for x-ray and photodetection. Nanotechnology, 2022, 33(31): 1-24. doi: 10.1088/1361-6528/ac6884http://dx.doi.org/10.1088/1361-6528/ac6884
KASAP S. X-ray sensitivity of photoconductors: application to stabilized a-Se. Journal of Physics D: Applied Physics, 2000, 33(21): 2853-2865. doi: 10.1088/0022-3727/33/21/326http://dx.doi.org/10.1088/0022-3727/33/21/326
SCHIEBER M, HERMON H, ZUCK A, et al. Deposition of thick films of polycrystalline mercuric iodide x-ray detectors. Proc.SPIE, 2001: 133-139. doi: 10.1117/12.430922http://dx.doi.org/10.1117/12.430922
SCHLESINGER T, TONEY J, YOON H, et al. Cadmium zinc telluride and its use as a nuclear radiation detector material. Materials Science & Engineering R-Reports, 2001, 32(4-5): 103-189. doi: 10.1016/s0927-796x(01)00027-4http://dx.doi.org/10.1016/s0927-796x(01)00027-4
STOUMPOS C, MALLIAKAS C, PETERS J, et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Crystal Growth & Design, 2013, 13(7): 2722-2727. doi: 10.1021/cg400645thttp://dx.doi.org/10.1021/cg400645t
YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photonics, 2015, 9(7): 444-449. doi: 10.1038/nphoton.2015.82http://dx.doi.org/10.1038/nphoton.2015.82
PAN W, YANG B, NIU G, et al. Hot-Pressed CsPbBr3 Quasi-Monocrystalline Film for Sensitive Direct X-ray Detection. Adv Mater, 2019, 31(44): 1904405-1-8. doi: 10.1002/adma.201904405http://dx.doi.org/10.1002/adma.201904405
KIM Y, KIM K, SON D, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87-91. doi: 10.1038/nature24032http://dx.doi.org/10.1038/nature24032
SUN L, LI W, ZHU W, et al. Single-crystal perovskite detectors: development and perspectives. Journal of Materials Chemistry C, 2020, 8(34): 11664-11674. doi: 10.1039/d0tc02944khttp://dx.doi.org/10.1039/d0tc02944k
LI Y, LEI Y, WANG H, et al. Two-Dimensional Metal Halides for X-Ray Detection Applications. Nanomicro Lett, 2023, 15(1): 128-1-18. doi: 10.1007/s40820-023-01118-1http://dx.doi.org/10.1007/s40820-023-01118-1
CHAI Y, JIANG C, HU X, et al. Homogeneous Bridging Induces Compact and Scalable Perovskite Thick Films for X‐Ray Flat‐Panel Detectors. Small, 2023, 10.1002/smll.202305357: 2305357-1-10. doi: 10.1002/smll.202305357http://dx.doi.org/10.1002/smll.202305357
WU Y, FENG J, YANG Z, et al. Halide Perovskite: A Promising Candidate for Next-Generation X-Ray Detectors. Adv Sci (Weinh), 2022, 10.1002/advs.202205536: 2205536-1-48. doi: 10.1002/advs.202205536http://dx.doi.org/10.1002/advs.202205536
SHABBIR B, YU J C, WARNAKULA T, et al. Printable Perovskite Diodes for Broad Spectrum Multi-Energy X-Ray Detection. Adv Mater, 2023, 10.1002/adma.202210068: 2210068-1-10. doi: 10.1002/adma.202210068http://dx.doi.org/10.1002/adma.202210068
XIE C, LIU C, LOI H, et al. Perovskite‐Based Phototransistors and Hybrid Photodetectors. Advanced Functional Materials, 2019, 30(20): 1903907-1-28. doi: 10.1002/adfm.201903907http://dx.doi.org/10.1002/adfm.201903907
LI L, YE S, QU J, et al. Recent Advances in Perovskite Photodetectors for Image Sensing. Small, 2021, 17(18): 2005606-1-27. doi: 10.1002/smll.202005606http://dx.doi.org/10.1002/smll.202005606
YAKUNIN S, DIRIN D, SHYNKARENKO Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nature Photonics, 2016, 10(9): 585-589. doi: 10.1038/nphoton.2016.139http://dx.doi.org/10.1038/nphoton.2016.139
CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 2015, 5(15): 1500477-1-8. doi: 10.1002/aenm.201500477http://dx.doi.org/10.1002/aenm.201500477
YAO M, JIANG J, XIN D, et al. High-Temperature Stable FAPbBr3 Single Crystals for Sensitive X-ray and Visible Light Detection toward Space. Nano Letters, 2021, 21(9): 3947-3955. doi: 10.1021/acs.nanolett.1c00700http://dx.doi.org/10.1021/acs.nanolett.1c00700
JIANG J, XIONG M, FAN K, et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nature Photonics, 2022, 16: 575-581. doi: 10.1038/s41566-022-01024-9http://dx.doi.org/10.1038/s41566-022-01024-9
PAN W, WU H, LUO J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726-732. doi: 10.1038/s41566-017-0012-4http://dx.doi.org/10.1038/s41566-017-0012-4
YANG B, PAN W, WU H, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nature Communications, 2019, 10: 1-10. doi: 10.1038/s41467-019-09968-3http://dx.doi.org/10.1038/s41467-019-09968-3
LIU Y, ZHANG Y, YANG Z, et al. Large Lead‐Free Perovskite Single Crystal for High‐Performance Coplanar X‐Ray Imaging Applications. Advanced Optical Materials, 2020, 8(19): 2000814-1-12. doi: 10.1002/adom.202000814http://dx.doi.org/10.1002/adom.202000814
ZHUANG R, WANG X, MA W, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nature Photonics, 2019, 13(9): 602-608. doi: 10.1038/s41566-019-0466-7http://dx.doi.org/10.1038/s41566-019-0466-7
LIU J, SHABBIR B, WANG C, et al. Flexible, Printable Soft-X-Ray Detectors Based on All-Inorganic Perovskite Quantum Dots. Adv Mater, 2019, 31(30): 1901644-1-8. doi: 10.1002/adma.201970214http://dx.doi.org/10.1002/adma.201970214
GUO J, XU Y, YANG W, et al. High-Stability Flexible X-ray Detectors Based on Lead-Free Halide Perovskite Cs2TeI6 Films. Acs Applied Materials & Interfaces, 2021, 13(20): 23928-23935. doi: 10.1021/acsami.1c04252http://dx.doi.org/10.1021/acsami.1c04252
YANG M, LI A, HAO X, et al. Highly Sensitive X‐Ray Detector Made of Large Lead‐Free Perovskite Cs3Bi2I9 Single Crystals with Anisotropic Response. Advanced Optical Materials, 2023, 11(15): 2203066-1-7. doi: 10.1002/adom.202203066http://dx.doi.org/10.1002/adom.202203066
WEI S, TIE S, SHEN K, et al. High-Performance X-Ray Detector Based on Liquid Diffused Separation Induced Cs3Bi2I9 Single Crystal. Advanced Optical Materials, 2021, 9(22): 2101351-1-9. doi: 10.1002/adom.202101351http://dx.doi.org/10.1002/adom.202101351
XIA M, YUAN J-H, NIU G, et al. Unveiling the Structural Descriptor of A3B2X9 Perovskite Derivatives toward X-Ray Detectors with Low Detection Limit and High Stability. Advanced Functional Materials, 2020, 30(24): 1910648-1-8. doi: 10.1002/adfm.201910648http://dx.doi.org/10.1002/adfm.201910648
LIN C, HU L, GUAN X, et al. Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces. Adv Mater, 2022, 34(18): 2108616-1-29. doi: 10.1002/adma.202108616http://dx.doi.org/10.1002/adma.202108616
ZHANG B, LIU X, XIAO B, et al. High-Performance X-ray Detection Based on One-Dimensional Inorganic Halide Perovskite CsPbI3. Journal of Physical Chemistry Letters, 2020, 11(2): 432-437. doi: 10.1021/acs.jpclett.9b03523http://dx.doi.org/10.1021/acs.jpclett.9b03523
LEDEE F, CIAVATTI A, VERDI M, et al. Ultra-Stable and Robust Response to X-Rays in 2D Layered Perovskite Micro-Crystalline Films Directly Deposited on Flexible Substrate. Advanced Optical Materials, 2022, 10(1): 2101145-1-9. doi: 10.1002/adom.202101145http://dx.doi.org/10.1002/adom.202101145
YE F, LIN H, WU H, et al. High‐Quality Cuboid CH3NH3PbI3 Single Crystals for High Performance X‐Ray and Photon Detectors. Advanced Functional Materials, 2018, 29(6): 1806984-1-7. doi: 10.1002/adfm.201806984http://dx.doi.org/10.1002/adfm.201806984
GENG X, FENG Q, ZHAO R, et al. High-Quality Single Crystal Perovskite for Highly Sensitive X-Ray Detector. IEEE Electron Device Letters, 2020, 41(2): 256-259. doi: 10.1109/led.2019.2960384http://dx.doi.org/10.1109/led.2019.2960384
LI J, DU X, NIU G, et al. Rubidium Doping to Enhance Carrier Transport in CsPbBr3 Single Crystals for High-Performance X-Ray Detection. ACS Appl Mater Interfaces, 2020, 12(1): 989-996. doi: 10.1021/acsami.9b14772http://dx.doi.org/10.1021/acsami.9b14772
ZHANG H, WANG F, LU Y, et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals. Journal of Materials Chemistry C, 2020, 8(4): 1248-1256. doi: 10.1039/c9tc05490ahttp://dx.doi.org/10.1039/c9tc05490a
LIU Y, XU Z, YANG Z, et al. Inch-Size 0D-Structured Lead-Free Perovskite Single Crystals for Highly Sensitive Stable X-Ray Imaging. Matter, 2020, 3(1): 180-196. doi: 10.1016/j.matt.2020.04.017http://dx.doi.org/10.1016/j.matt.2020.04.017
HE Y, MATEI L, JUNG H, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat Commun, 2018, 9(1): 1-8. doi: 10.1038/s41467-018-04073-3http://dx.doi.org/10.1038/s41467-018-04073-3
HUANG Y, QIAO L, JIANG Y, et al. A-site Cation Engineering for Highly Efficient MAPbI3 Single-Crystal X-ray Detector
Angewandte Chemie-International Edition, 2019, 58(49): 17834-17842.
PAN L, FENG Y, HUANG J, et al. Comparison of Zr, Bi, Ti, and Ga as Metal Contacts in Inorganic Perovskite CsPbBr₃ Gamma-Ray Detector. IEEE Transactions on Nuclear Science, 2020, 67(10): 2255-2262. doi: 10.1109/tns.2020.3018101http://dx.doi.org/10.1109/tns.2020.3018101
CARRILLO J, GUERRERO A, RAHIMNEJAD S, et al. Ionic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells. Advanced Energy Materials, 2016, 6(9): 1502246-1-7. doi: 10.1002/aenm.201502246http://dx.doi.org/10.1002/aenm.201502246
KATO Y, ONO L K, LEE M V, et al. Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Advanced Materials Interfaces, 2015, 2(13): 1500195-1-6. doi: 10.1002/admi.201570065http://dx.doi.org/10.1002/admi.201570065
WANG J, SENANAYAK S P, LIU J, et al. Investigation of Electrode Electrochemical Reactions in CH3NH3PbBr3 Perovskite Single‐Crystal Field‐Effect Transistors. Advanced Materials, 2019, 31(35): 1902618-1-8. doi: 10.1002/adma.201902618http://dx.doi.org/10.1002/adma.201902618
SONG Y, LI L, HAO M, et al. Elimination of Interfacial-Electrochemical-Reaction-Induced Polarization in Perovskite Single Crystals for Ultrasensitive and Stable X-Ray Detector Arrays. Advanced Materials, 2021, 33(52): 2103078-1-10. doi: 10.1002/adma.202103078http://dx.doi.org/10.1002/adma.202103078
GAO Y, GE Y, WANG X, et al. Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors. Advanced Materials, 2021, 33(32): 2101717-1-9. doi: 10.1002/adma.202101717http://dx.doi.org/10.1002/adma.202101717
JIN P, TANG Y, XU X, et al. Solution-Processed Perovskite/Metal-Oxide Hybrid X-Ray Detector and Array with Decoupled Electronic and Ionic Transport Pathways. Small Methods, 2022, 6(8): 2200500-1-9. doi: 10.1002/smtd.202200500http://dx.doi.org/10.1002/smtd.202200500
MING W, YANG D, LI T, et al. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH3NH3PbI3: Implications on Solar Cell Degradation and Choice of Electrode. Advanced Science, 2017, 5(2): 1700662-1-10. doi: 10.1002/advs.201700662http://dx.doi.org/10.1002/advs.201700662
CHAI Y, JUAN Z, WU Y, et al. Suppressing the Ion Migration in Halide Perovskite Wafers for Current-Drift Free X-ray Detectors. ACS Applied Electronic Materials, 2023, 5(1): 544-551. doi: 10.1021/acsaelm.2c01597http://dx.doi.org/10.1021/acsaelm.2c01597
RUAN Y, GUO P, ZHENG Z, et al. Reducing the leakage current for a CsPbBr3 detector via asymmetric area electrodes and heterostructures. Journal of Materials Chemistry C, 2021, 9(39): 13869-13875. doi: 10.1039/d1tc02314dhttp://dx.doi.org/10.1039/d1tc02314d
HE Y, PETRYK M, LIU Z, et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nature Photonics, 2020, 15(1): 36-42. doi: 10.1038/s41566-020-00727-1http://dx.doi.org/10.1038/s41566-020-00727-1
HE Y, HADAR I, KANATZIDIS M G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nature Photonics, 2021, 16(1): 14-26. doi: 10.1038/s41566-021-00909-5http://dx.doi.org/10.1038/s41566-021-00909-5
WU H, CHEN X, SONG Z, et al. Mechanochemical Synthesis of High-Entropy Perovskite toward Highly Sensitive and Stable X-ray Flat-Panel Detectors. Adv Mater, 2023, 10.1002/adma.202301406: 2301406-1-8. doi: 10.1002/adma.202301406http://dx.doi.org/10.1002/adma.202301406
ZHANG Q, ZHANG C, LU Y, et al. Progress in the development of CdZnTe unipolar detectors for different anode geometries and data corrections. Sensors (Basel), 2013, 13(2): 2447-2474. doi: 10.3390/s130202447http://dx.doi.org/10.3390/s130202447
HE Y, WANG Z, WANG Z, et al. Perovskite band engineering for high-performance X-ray detection. Frontiers in Physics, 2023, 11: 01-12. doi: 10.3389/fphy.2023.1114242http://dx.doi.org/10.3389/fphy.2023.1114242
LIU Y, ZHANG Y, ZHU X, et al. Triple-Cation and Mixed-Halide Perovskite Single Crystal for High-Performance X-ray Imaging. Adv Mater, 2021, 33(8): 2006010-1-10. doi: 10.1002/adma.202006010http://dx.doi.org/10.1002/adma.202006010
NANAYAKKARA M P A, MASTEGHIN M G, BASIRICO L, et al. Molecular Weight Tuning of Organic Semiconductors for Curved Organic-Inorganic Hybrid X-Ray Detectors. Adv Sci (Weinh), 2022, 9(2): 2101746-1-15. doi: 10.1002/advs.202101746http://dx.doi.org/10.1002/advs.202101746
WEI J, TAO L, LI L, et al. Tuning the Photon Sensitization Mechanism in Metal-Halide-Perovskite-Based Nanocomposite Films Toward Highly Efficient and Stable X-Ray Detection. Advanced Optical Materials, 2022, 10(7): 2102320-1-10. doi: 10.1002/adom.202102320http://dx.doi.org/10.1002/adom.202102320
JI R, ZHANG Z, HOFSTETTER Y J, et al. Perovskite phase heterojunction solar cells. Nature Energy, 2022, 7(12): 1170-1179. doi: 10.1038/s41560-022-01154-yhttp://dx.doi.org/10.1038/s41560-022-01154-y
XU X, QIAN W, WANG J, et al. Sequential Growth of 2D/3D Double-Layer Perovskite Films with Superior X-Ray Detection Performance. Advanced Science, 2021, 8(21): 2102730-1-12. doi: 10.1002/advs.202102730http://dx.doi.org/10.1002/advs.202102730
ZHANG X, ZHU T, JI C, et al. In Situ Epitaxial Growth of Centimeter-Sized Lead-Free (BA)2CsAgBiBr7/Cs2AgBiBr6 Heterocrystals for Self-Driven X-ray Detection. J Am Chem Soc, 2021, 143(49): 20802-20810. doi: 10.1021/jacs.1c08959http://dx.doi.org/10.1021/jacs.1c08959
ZHOU Y, ZHAO L, NI Z, et al. Heterojunction structures for reduced noise in large-area and sensitive perovskite x-ray detectors. Science Advances, 2021, 7(36): eabg6716-1-8. doi: 10.1126/sciadv.abg6716http://dx.doi.org/10.1126/sciadv.abg6716
HAN M, XIAO Y, ZHOU C, et al. Suppression of Ionic and Electronic Conductivity by Multilayer Heterojunctions Passivation Toward Sensitive and Stable Perovskite X‐Ray Detectors. Advanced Functional Materials, 2023, 10.1002/adfm.202303376: 2303376-1-12. doi: 10.1002/adfm.202303376http://dx.doi.org/10.1002/adfm.202303376
CUI F, ZHANG P, ZHANG L, et al. Liquid-Phase Epitaxial Growth of Large-Area MAPbBr3–nCln/CsPbBr3 Perovskite Single-Crystal Heterojunction for Enhancing Sensitivity and Stability of X-ray Detector. Chemistry of Materials, 2022, 34(21): 9601-9612. doi: 10.1021/acs.chemmater.2c02266http://dx.doi.org/10.1021/acs.chemmater.2c02266
WEI H, FANG Y, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10(5): 333-339. doi: 10.1038/nphoton.2016.41http://dx.doi.org/10.1038/nphoton.2016.41
SHRESTHA S, FISCHER R, MATT G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nature Photonics, 2017, 11(7): 436-+. doi: 10.1038/nphoton.2017.94http://dx.doi.org/10.1038/nphoton.2017.94
BASIRICO L, SENANAYAK S P, CIAVATTI A, et al. Detection of X-Rays by Solution-Processed Cesium-Containing Mixed Triple Cation Perovskite Thin Films. Advanced Functional Materials, 2019, 29(34): 1902346-1-9. doi: 10.1002/adfm.201902346http://dx.doi.org/10.1002/adfm.201902346
MESCHER H, SCHACKMAR F, EGGERS H, et al. Flexible Inkjet-Printed Triple Cation Perovskite X-ray Detectors. ACS Appl Mater Interfaces, 2020, 12(13): 15774-15784. doi: 10.1021/acsami.9b14649http://dx.doi.org/10.1021/acsami.9b14649
XU Y D, JIAO B, SONG T B, et al. Zero-Dimensional Cs2TeI6 Perovskite: Solution-Processed Thick Films with High X-ray Sensitivity. Acs Photonics, 2019, 6(1): 196-203.
SONG J M, FENG X P, LI H Y, et al. Facile Strategy for Facet Competition Management to Improve the Performance of Perovskite Single-Crystal X-ray Detectors. Journal of Physical Chemistry Letters, 2020, 11(9): 3529-3535. doi: 10.1021/acs.jpclett.0c00770http://dx.doi.org/10.1021/acs.jpclett.0c00770
LI N, LI Y, XIE S, et al. High-Performance and Self-Powered X-Ray Detectors Made of Smooth Perovskite Microcrystalline Films with 100-mum Grains. Angew Chem Int Ed Engl, 2023, 10.1002/anie.202302435: 202302435-1-10. doi: 10.1002/anie.202302435http://dx.doi.org/10.1002/anie.202302435
TSAI H, LIU F D, SHRESTHA S, et al. A sensitive and robust thin-film x-ray detector using 2D layered perovskite diodes. Science Advances, 2020, 6(15): eaay0815-1-7. doi: 10.1126/sciadv.aay0815http://dx.doi.org/10.1126/sciadv.aay0815
HE X, XIA M, WU H, et al. Quasi‐2D Perovskite Thick Film for X‐Ray Detection with Low Detection Limit. Advanced Functional Materials, 2021, 32(7). doi: 10.1002/adfm.202109458http://dx.doi.org/10.1002/adfm.202109458
HE Y, PAN W, GUO C, et al. 3D/2D Perovskite Single Crystals Heterojunction for Suppressed Ions Migration in Hard X‐Ray Detection. Advanced Functional Materials, 2021, 31(49): 2104880-1-8. doi: 10.1002/adfm.202104880http://dx.doi.org/10.1002/adfm.202104880
李晓明(1991-),男,江苏江阴人,博士,教授,博士生导师,2017年于南京航空大学获得博士学位,主要从事金属卤化物材料发光及X射线探测方向的研究。. doi: 10.1002/adfm.202104880http://dx.doi.org/10.1002/adfm.202104880
0
Views
2
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution