1.华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510641
扫 描 看 全 文
欧家琦,彭曾一,王俊杰等.喷墨打印量子点薄膜:墨水溶剂的选择策略[J].发光学报,
OU Jia-qi,PENG Zeng-yi,WANG Jun-jie,et al.Inkjet Printing Quantum Dot Films: Solvent Selection Strategies for Jetting Inks[J].Chinese Journal of Luminescence,
欧家琦,彭曾一,王俊杰等.喷墨打印量子点薄膜:墨水溶剂的选择策略[J].发光学报, DOI:10.37188/CJL.20230228
OU Jia-qi,PENG Zeng-yi,WANG Jun-jie,et al.Inkjet Printing Quantum Dot Films: Solvent Selection Strategies for Jetting Inks[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230228
喷墨打印制备的量子点(Quantum dots, QDs)薄膜形貌对多层发光器件的性能影响显著(如量子点发光二极管),其中咖啡环与拱状形貌是典型的薄膜均匀性问题,通过液滴调控实现高质量QDs薄膜是发展量子点电致发光显示的关键。研究工作表明,通过溶剂实施的墨水调控被证明是改变沉积薄膜形貌的有效手段。然而,优化出可消除咖啡环或拱状形貌的墨水流变参数往往需要大量耗时的实验,墨水配制筛选效率低。本研究基于薄膜形貌分析结合机器学习方法,试图将溶剂流变参数与喷墨打印QDs薄膜形貌直接联系起来,并以红光QDs为溶质,以烷烃或直链酯类为溶剂,研究发现通常使用的一元溶剂和二元溶剂体系中,所使用溶剂的沸点比表面张力或粘度参数对薄膜沉积形貌的影响更加显著,在二元溶剂中薄膜形貌与沸点较高的溶剂组分密切相关。为得到厚度均匀的平整薄膜,建议一元溶剂墨水体系的溶剂或二元溶剂墨水体系中较高沸点的溶剂的沸点范围为250℃~ 265℃。
The morphology of quantum dots (QDs) films fabricated by inkjet printing makes a marked impact on the performance of multi-layer photoelectronic devices, such as quantum dot light emitting diodes, where coffee-ring and bulge phenomena behave as the typical poor morphology types. Realizing high-quality QDs films through droplet modulation is key to the development of QDs electroluminescent displays. Ink engineering has proven effective in adjusting the film morphology. However, a well-tailored ink with precise rheological properties to eliminate coffee ring or bulge requires multiple time-consuming experimental attempts, resulting in lower working efficiency. In this work, we sought to directly bridge the gap between the rheological properties of solvents and the profiles of inkjet-printed QDs films with post-mortem film analysis and machine learning methods adopted for mutual proof. With red QDs as the solutes, and alkanes or chain esters as solvents, work on unitary-solvent and binary-solvent ink systems was investigated to find out that generally, the boiling point of the used solvent displayed significant importance higher than that of surface tension or viscosity in both unitary and binary systems. Specifically, the film profile was closely related to the solvent with a higher boiling point in binary systems and uniform films were revealed. A boiling point range of 250℃ ~ 265℃ for the solvent in the unitary-solvent ink system or for the higher-boiling-point solvent in the binary-solvent ink systems can promisingly result uniform films after drying.
量子点墨水喷墨打印溶剂机器学习
quantum dot inkinkjet printingsolventmachine learning
LIU Z, LIN C H, HYUN B R, et al. Micro-light-emitting diodes with quantum dots in display technology [J]. Light: Sci. Appl., 2020, 9(1): 83. doi: 10.1038/s41377-020-0268-1http://dx.doi.org/10.1038/s41377-020-0268-1
LEE E, WANG C, YUREK J, et al. A new frontier for quantum dots in displays [J]. Information Display, 2018, 34(6): 10-13. doi: 10.1002/j.2637-496x.2018.tb01132.xhttp://dx.doi.org/10.1002/j.2637-496x.2018.tb01132.x
KAÇAR R, SERİN R B, ESIN U, et al. A review of high-end display technologies focusing on inkjet printed manufacturing [J]. Mater. Today Commun., 2023, 35: 105534. doi: 10.1016/j.mtcomm.2023.105534http://dx.doi.org/10.1016/j.mtcomm.2023.105534
SHU Y F, LIN X, QIN H Y, et al. Quantum dots for display applications [J]. Angew. Chem. Int. Ed., 2020, 59(50): 22312-22323. doi: 10.1002/anie.202004857http://dx.doi.org/10.1002/anie.202004857
MOON H S, LEE C M, LEE W S, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications [J]. Adv. Mater., 2019, 31(34): 1804294. doi: 10.1002/adma.201804294http://dx.doi.org/10.1002/adma.201804294
SUN Y Z, JIANG Y B, SUN X W, et al. Beyond OLED: efficient quantum dot light-emitting diodes for display and lighting application [J]. Chem. Rec., 2019, 19(8): 1729-1752. doi: 10.1002/tcr.201800191http://dx.doi.org/10.1002/tcr.201800191
JANG H J, LEE J Y, BAEK G W, et al. Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years [J]. J. Inf. Disp., 2022, 23(1): 1-17. doi: 10.1080/15980316.2022.2035835http://dx.doi.org/10.1080/15980316.2022.2035835
LAN L H, ZOU J H, JIANG C B, et al. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes [J]. Front. Optoelectron., 2017, 10: 329-352. doi: 10.1007/s12200-017-0765-xhttp://dx.doi.org/10.1007/s12200-017-0765-x
BAI J Y, HU H L, YU Y S, et al. Achieving high performance InP quantum dot light-emitting devices by using inkjet printing [J]. Org. Electron., 2023, 113: 106705. doi: 10.1016/j.orgel.2022.106705http://dx.doi.org/10.1016/j.orgel.2022.106705
BUKOWSKI T J, SIMMONS J H. Quantum dot research: current state and future prospects [J]. Crit.Rev.Solid State Mater.Sci., 2002, 27(3-4): 119-142. doi: 10.1080/10408430208500496http://dx.doi.org/10.1080/10408430208500496
JANG E J, JANG H S. Quantum dot light-emitting diodes [J]. Chem. Rev., 2023, 123(8): 4663-4692. doi: 10.1021/acs.chemrev.2c00695http://dx.doi.org/10.1021/acs.chemrev.2c00695
WEI C T, SU W M, LI J T, et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes [J]. Adv. Mater., 2022, 34(10): 2107798. doi: 10.1002/adma.202107798http://dx.doi.org/10.1002/adma.202107798
WANG J H, DONG T, ZHONG Z M, et al. Uniform inkjet-printed films with single solvent [J]. Thin Solid Films, 2018, 667: 21-27. doi: 10.1016/j.tsf.2018.09.054http://dx.doi.org/10.1016/j.tsf.2018.09.054
HAN J S, KO D H, PARK M J, et al. Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays [J]. J. Soc. Inf. Disp., 2016, 24(9): 545-551. doi: 10.1002/jsid.467http://dx.doi.org/10.1002/jsid.467
DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997, 389(6653): 827-829. doi: 10.1038/39827http://dx.doi.org/10.1038/39827
SEFIANE K. Patterns from drying drops [J]. Adv. Colloid Interface Sci., 2014, 206: 372-381. doi: 10.1016/j.cis.2013.05.002http://dx.doi.org/10.1016/j.cis.2013.05.002
KOVALCHUK N M, TRYBALA A, STAROV V M. Evaporation of sessile droplets [J]. Curr. Opin. Colloid Interface Sci., 2014, 19(4): 336-342. doi: 10.1016/j.cocis.2014.07.005http://dx.doi.org/10.1016/j.cocis.2014.07.005
WILSON S K, D’AMBROSIO H M. Evaporation of sessile droplets [J]. Annu. Rev. Fluid Mech., 2023, 55: 481-509. doi: 10.1146/annurev-fluid-031822-013213http://dx.doi.org/10.1146/annurev-fluid-031822-013213
EALES A D, ROUTH A F, DARTNELL N, et al. Evaporation of pinned droplets containing polymer - an examination of the important groups controlling final shape [J]. AIChE J., 2015, 61(5): 1759-1767. doi: 10.1002/aic.14777http://dx.doi.org/10.1002/aic.14777
WANG Z Y, OREJON D, TAKATA Y, et al. Wetting and evaporation of multicomponent droplets [J]. Phys. Rep., 2022, 960: 1-37. doi: 10.1016/j.physrep.2022.02.005http://dx.doi.org/10.1016/j.physrep.2022.02.005
MAN X K, DOI M. Vapor-induced motion of liquid droplets on an inert substrate [J]. Phys. Rev. Lett., 2017, 119(4): 044502. doi: 10.1103/physrevlett.119.044502http://dx.doi.org/10.1103/physrevlett.119.044502
MAMPALLIL D, ERAL H B. A review on suppression and utilization of the coffee-ring effect [J]. Adv. Colloid Interface Sci., 2018, 252: 38-54. doi: 10.1016/j.cis.2017.12.008http://dx.doi.org/10.1016/j.cis.2017.12.008
BRUTIN D. Droplet Wetting and Evaporation: from Pure to Complex Fluids [M]. New York: Academic Press, 2015. doi: 10.1016/b978-0-12-800722-8.00023-0http://dx.doi.org/10.1016/b978-0-12-800722-8.00023-0
WILLIAMS A G L, KARAPETSAS G, MAMALIS D, et al. Spreading and retraction dynamics of sessile evaporating droplets comprising volatile binary mixtures [J]. J. Fluid Mech., 2021, 907: A22. doi: 10.1017/jfm.2020.840http://dx.doi.org/10.1017/jfm.2020.840
KARPITSCHKA S, LIEBIG F, RIEGLER H. Marangoni contraction of evaporating sessile droplets of binary mixtures [J]. Langmuir, 2017, 33(19): 4682-4687. doi: 10.1021/acs.langmuir.7b00740http://dx.doi.org/10.1021/acs.langmuir.7b00740
PAHLAVAN A A, YANG L, BAIN C D, et al. Evaporation of binary-mixture liquid droplets: the formation of picoliter pancakelike shapes [J]. Phys. Rev. Lett., 2021, 127(2): 024501. doi: 10.1103/physrevlett.127.024501http://dx.doi.org/10.1103/physrevlett.127.024501
PARK J H, MOON J H. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing [J]. Langmuir, 2006, 22(8): 3506-3513. doi: 10.1021/la053450jhttp://dx.doi.org/10.1021/la053450j
JIANG C B, ZHONG Z M, LIU B Q, et al. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2016, 8(39): 26162-26168. doi: 10.1021/acsami.6b08679http://dx.doi.org/10.1021/acsami.6b08679
LIU Y, LI F S, XU Z W, et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique [J]. ACS Appl. Mater. Interfaces, 2017, 9(30): 25506-25512. doi: 10.1021/acsami.7b05381http://dx.doi.org/10.1021/acsami.7b05381
XIONG X Y, WEI C T, XIE L M, et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface [J]. Org. Electron., 2019, 73: 247-254. doi: 10.1016/j.orgel.2019.06.016http://dx.doi.org/10.1016/j.orgel.2019.06.016
JIA S Q, TANG H D, MA J R, et al. High performance inkjet-printed quantum-dot light-emitting diodes with high operational stability [J]. Adv. Opt. Mater., 2021, 9(22): 2101069. doi: 10.1002/adom.202101069http://dx.doi.org/10.1002/adom.202101069
CHEN M, XIE L M, WEI C T, et al. High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system [J]. Nano Res., 2021, 14(11): 4125-4131. doi: 10.1007/s12274-021-3352-9http://dx.doi.org/10.1007/s12274-021-3352-9
熊雪莹,魏昌庭,苏文明,等. 喷墨打印镉基绿光量子点发光二极管及其界面 [J]. 发光学报, 2019, 40(10): 1274-1280. doi: 10.3788/fgxb20194010.1274http://dx.doi.org/10.3788/fgxb20194010.1274
XIONG X Y, WEI C T, SU W M, et al. Performance and interface of inkjet-printed cadmium(Cd)-based green quantum dot. doi: 10.3788/fgxb20194010.1274http://dx.doi.org/10.3788/fgxb20194010.1274
light-emitting diodes [J]. Chinese J. Lumin., 2019, 40(10): 1274-1280. (in Chinese). doi: 10.3788/fgxb20194010.1274http://dx.doi.org/10.3788/fgxb20194010.1274
郭标,穆兰,罗宇,等. 喷墨打印量子点墨水调控 [J]. 发光学报, 2021, 42(06): 880-888. doi: 10.1023/a:1010650624155http://dx.doi.org/10.1023/a:1010650624155
GUO B, MU L, LUO Y, et al. Ink formulation of quantum dots in ink jet printing [J]. Chinese J. Lumin., 2021, 42(6): 880-888. doi: 10.1023/a:1010650624155http://dx.doi.org/10.1023/a:1010650624155
(in Chinese). doi: 10.1023/a:1010650624155http://dx.doi.org/10.1023/a:1010650624155
YANG X Y, JIANG Z C, LYU P H, et al. Deposition pattern of drying droplets [J]. Commun. Theor. Phys., 2021, 73(4): 047601. doi: 10.1088/1572-9494/abda21http://dx.doi.org/10.1088/1572-9494/abda21
BREIMAN L. Random forests [J]. Machine Learning, 2001, 45: 5-32. doi: 10.1023/a:1010933404324http://dx.doi.org/10.1023/a:1010933404324
NICODEMUS K K. On the stability and ranking of predictors from random forest variable importance measures [J]. Briefings Bioinf., 2011, 12(4): 369-373. doi: 10.1093/bib/bbr016http://dx.doi.org/10.1093/bib/bbr016
BIAU G, SCORNET E. A random forest guided tour [J]. Test, 2016, 25: 197-227. doi: 10.1007/s11749-016-0481-7http://dx.doi.org/10.1007/s11749-016-0481-7
SOLTMAN D, SMITH B, KANG H K, et al. Methodology for inkjet printing of partially wetting films [J]. Langmuir, 2010, 26(19): 15686-15693. doi: 10.1021/la102053jhttp://dx.doi.org/10.1021/la102053j
XIE Q G, HARTING J. From dot to ring: the role of friction in the deposition pattern of a drying colloidal suspension droplet [J]. Langmuir, 2018, 34(18): 5303-5311. doi: 10.1021/acs.langmuir.8b00727http://dx.doi.org/10.1021/acs.langmuir.8b00727
LARSON R G. Twenty years of drying droplets [J]. Nature, 2017, 550: 466-467. doi: 10.1038/550466ahttp://dx.doi.org/10.1038/550466a
ZHONG X, CRIVOI A, DUAN F. Sessile nanofluid droplet drying [J]. Adv. Colloid Interface Sci., 2015, 217: 13-30. doi: 10.1016/j.cis.2014.12.003http://dx.doi.org/10.1016/j.cis.2014.12.003
LARSON R G. Transport and deposition patterns in drying sessile droplets [J]. AIChE J., 2014, 60(5): 1538-1571. doi: 10.1002/aic.14338http://dx.doi.org/10.1002/aic.14338
TESHIGAWARA R, ONUKI A. Spreading with evaporation and condensation in one-component fluids [J]. Phys. Rev. E, 2010, 82(2): 021603. doi: 10.1103/physreve.82.021603http://dx.doi.org/10.1103/physreve.82.021603
KRAINER S, SMIT C, HIRN U. The effect of viscosity and surface tension on inkjet printed picoliter dots [J]. RSC Adv., 2019, 9(54): 31708-31719. doi: 10.1039/c9ra04993bhttp://dx.doi.org/10.1039/c9ra04993b
雷霄霄,叶芸,林楠,等. 喷墨打印量子点薄膜的形貌控制 [J]. 光子学报, 2019, 48(06): 114-122. doi: 10.3788/gzxb20194806.0616001http://dx.doi.org/10.3788/gzxb20194806.0616001
LEI X X, YE Y, LIN N, et al. Morphology controlling of quantum dots thin films prepared by inkjet printing [J]. Acta Photonica Sinica, 2019, 48(6): 0616001. (in Chinese). doi: 10.3788/gzxb20194806.0616001http://dx.doi.org/10.3788/gzxb20194806.0616001
0
Views
4
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution