浏览全部资源
扫码关注微信
1.成都大学 机械工程学院, 四川 成都 610106
2.昆明理工大学 材料科学与工程学院, 云南省新材料制备与加工重点实验室, 云南 昆明 650093
3.交通运输部南海航海保障中心 北海航标处, 广西 北海 536000
4.成都理工大学 材料与化学化工学院, 四川 成都 610059
Published:05 November 2023,
Received:09 September 2023,
Revised:23 September 2023,
扫 描 看 全 文
安欣,岳杨,朱楠楠等.SrAl2O4∶Eu2+,Dy3+,Tm3+荧光材料的光激励诱导长余辉特性及其防伪应用[J].发光学报,2023,44(11):1931-1939.
AN Xin,YUE Yang,ZHU Nannan,et al.Photo-stimulated Long Afterglow of SrAl2O4∶Eu2+,Dy3+,Tm3+ and Its Anti-counterfeit Applications[J].Chinese Journal of Luminescence,2023,44(11):1931-1939.
安欣,岳杨,朱楠楠等.SrAl2O4∶Eu2+,Dy3+,Tm3+荧光材料的光激励诱导长余辉特性及其防伪应用[J].发光学报,2023,44(11):1931-1939. DOI: 10.37188/CJL.20230206.
AN Xin,YUE Yang,ZHU Nannan,et al.Photo-stimulated Long Afterglow of SrAl2O4∶Eu2+,Dy3+,Tm3+ and Its Anti-counterfeit Applications[J].Chinese Journal of Luminescence,2023,44(11):1931-1939. DOI: 10.37188/CJL.20230206.
防伪技术的提升关乎国家安全和社会稳定,对于当今社会信息安全领域十分重要。光存储荧光材料由于其成本低、分辨率高和响应速度快等特点在防伪领域展现出巨大优势。然而,荧光材料防伪模式单一以及对激发波长要求较高等一系列问题,一定程度上限制了其实际应用。SrAl
2
O
4
∶Eu
2+
,Dy
3+
(SAO∶Eu
2+
,Dy
3+
)作为最成功的长余辉发光材料,在弱光照明、发光涂料和道路指示标牌等领域具有广泛的应用。其长余辉现象归因于载流子在室温下受热扰动释放的过程,且依赖于有效陷阱的数量和浓度。因此,在该材料中构建陷阱将有效拓展其光存储的相关性能,一直受到关注。本文通过在光存储荧光材料SAO∶Eu
2+
,Dy
3+
中引入Tm
3+
离子可以调控陷阱密度及结构,在减少浅陷阱密度的同时增加了深陷阱浓度,进而有效调控载流子在陷阱中的存储与释放过程。通过980 nm近红外激光诱导深陷阱释放载流子可再次被浅陷阱捕获,表现出明显的光激励长余辉发射。基于此,本工作探索了一种温度和时间维度的多模式防伪技术,实现二进制编码的读写。因此,本工作通过对SAO∶Eu
2+
,Dy
3+
的陷阱调控实现动态防伪和光学信息存储,可拓展该荧光材料在信息安全领域的应用。
The advancement of anti-counterfeiting technology is closely linked to national security and social stability, making it significantly important in today's society, particularly in the realm of information security. Optical storage fluorescent materials offer significant advantages in the field of anti-counterfeiting with the characteristics of low cost, high resolution and fast response speed. Unfortunately, the practical application of these materials is limited by the single anti-counterfeiting mode of the corresponding phosphor and the requirement for specific excitation wavelengths. Among various long afterglow phosphors, SrAl
2
O
4
∶Eu
2+
,Dy
3+
(SAO∶Eu
2+
,Dy
3+
) stands out as the most successful one in low-light situations, luminous paint, road signs, and other applications. The long afterglow effect of SAO∶Eu
2+
,Dy
3+
is attributed to the release of the captured carriers by thermal disturbance at room temperature, and this phenomenon depends on the number and concentration of effective traps. It implies that constructing the trap structure of the corresponding phosphor could effectively regulate the relevant optical storage performance. In this study, the introduction of Tm
3+
ions into the SAO∶Eu
2+
,Dy
3+
optical storage fluorescent material is employed to regulate the trap density and structure. This adjustment can simultaneously reduce the trap density and form a rich deep defect structure, thereby significantly impacting the storage and release of the captured carriers. By employing near-infrared laser diode excitation, the carriers released from deep traps can be captured by the shallow traps, performing photo-stimulated properties, and the subsequently long afterglow luminescence after the removal of the excitation. Consequently, a temperature-dependent multi-mode anti-counterfeiting approach is explored to realize binary coding. This work demonstrates the application of dynamic anti-counterfeiting and optical information storage, expanding the practical application of SAO∶Eu
2+
,Dy
3+
phosphor in the field of information security.
光激励发光长余辉光学存储光激励诱导长余辉
photo-stimulated luminescencelong afterglowoptical storagephoto-stimulated long afterglow
芦博慧, 史慕杨, 逄增媛, 等. SrAl2O4∶Eu2+,Dy3+/Sr2MgSi2∶Eu2+,Dy3+/光转换剂红光发光材料的制备与表征 [J]. 中国稀土学报, 2022, 40(4): 591-601.
LU B H, SHI M Y, PANG Z Y, et al. Preparation and characterization of SrAl2O4∶Eu2+,Dy3+/Sr2MgSi2∶Eu2+,Dy3+/light conversion agent red-light emitting material [J]. J. Chin. Soc. Rare Earths, 2022, 40(4): 591-601. (in Chinese)
LI Z, HAO S S, JI W W, et al. Mechanism of long afterglow in SrAl2O4∶Eu phosphors [J]. Ceram. Int., 2021, 47(23): 32947-32953. doi: 10.1016/j.ceramint.2021.08.193http://dx.doi.org/10.1016/j.ceramint.2021.08.193
BIERWAGEN J, DELGADO T, AFSHANI J, et al. Observation of multiple sites for trivalent europium ions in SrAl2O4 [J]. J. Lumin., 2021, 239: 118348. doi: 10.1016/j.jlumin.2021.118348http://dx.doi.org/10.1016/j.jlumin.2021.118348
WANG J, MA J, ZHANG J C, et al. Advanced dynamic photoluminescent material for dynamic anticounterfeiting and encryption [J]. ACS Appl. Mater. Interfaces, 2019, 11(39): 35871-35878. doi: 10.1021/acsami.9b10870http://dx.doi.org/10.1021/acsami.9b10870
HUANG K, DOU X J, ZHANG Y F, et al. Enhancing light and X‐ray charging in persistent luminescence nanocrystals for orthogonal afterglow anti‐counterfeiting [J]. Adv. Funct. Mater., 2021, 31(22): 2009920. doi: 10.1002/adfm.202009920http://dx.doi.org/10.1002/adfm.202009920
ZHANG J C, PAN C, ZHU Y F, et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting [J]. Adv. Mater., 2018, 30(49): 1804644. doi: 10.1002/adma.201804644http://dx.doi.org/10.1002/adma.201804644
YANG X X, ZHAO L, CHEN W B, et al. Low-temperature red long-persistent luminescence of Pr3+ doped NaNbO3 with a perovskite structure [J]. J. Lumin., 2019, 208: 290-295. doi: 10.1016/j.jlumin.2018.12.066http://dx.doi.org/10.1016/j.jlumin.2018.12.066
ASHWINI K R, PREMKUMAR H B, DARSHAN G P, et al. Dysprosium doped strontium aluminate dusting powder: sweat pores visualization and white LED component [J]. Inorg. Chem. Commun., 2021, 134: 109028. doi: 10.1016/j.inoche.2021.109028http://dx.doi.org/10.1016/j.inoche.2021.109028
NANCE J, SPARKS T D. Comparison of coatings for SrAl2O4∶Eu2+, Dy3+ powder in waterborne road striping paint under wet conditions [J]. Prog. Org. Coat., 2020, 144: 105637. doi: 10.1016/j.porgcoat.2020.105637http://dx.doi.org/10.1016/j.porgcoat.2020.105637
JAMALAIAH B C, JAYASIMHADRI M. Tunable luminescence properties of SrAl2O4∶Eu3+ phosphors for LED applications [J]. J. Mol. Struct., 2019, 1178: 394-400. doi: 10.1016/j.molstruc.2018.10.060http://dx.doi.org/10.1016/j.molstruc.2018.10.060
ASHWINI K R, PREMKUMAR H B, DARUKA PRASAD B, et al. Green emitting SrAl2O4∶Tb3+ nano-powders for forensic, anti-counterfeiting and optoelectronic devices [J]. Inorg. Chem. Commun., 2021, 130: 108665. doi: 10.1016/j.inoche.2021.108665http://dx.doi.org/10.1016/j.inoche.2021.108665
XU C N, WATANABE T, AKIYAMA M, et al. Direct view of stress distribution in solid by mechanoluminescence [J]. Appl. Phys. Lett., 1999, 74(17): 2414-2416. doi: 10.1063/1.123865http://dx.doi.org/10.1063/1.123865
JIANG Y J, WANG F, ZHOU H, et al. Optimization of strontium aluminate-based mechanoluminescence materials for occlusal examination of artificial tooth [J]. Mater. Sci. Eng. C, 2018, 92: 374-380. doi: 10.1016/j.msec.2018.06.056http://dx.doi.org/10.1016/j.msec.2018.06.056
LIN S S, LIN H, HUANG Q M, et al. A photostimulated BaSi2O5∶Eu2+, Nd3+ phosphor-in-glass for erasable-rewritable optical storage medium [J]. Laser Photonics Rev., 2019, 13(4): 1900006. doi: 10.1002/lpor.201970022http://dx.doi.org/10.1002/lpor.201970022
MURAYAMA Y, WATANABE S, AKASE M, et al. Effects of composition and reduction conditions on persistent luminescence of SrAl2O4∶Eu, Dy prepared via a solid-state reaction [J]. J. Lumin., 2022, 251: 119248. doi: 10.1016/j.jlumin.2022.119248http://dx.doi.org/10.1016/j.jlumin.2022.119248
CANAZA-MAMANI E A, CANO N F, MOSQUEIRA-YAURI J, et al. TL and EPR characteristics of SrAl2O4 phosphor prepared by solid‐state reaction method [J]. J. Lumin., 2022, 245: 118585. doi: 10.1016/j.jlumin.2021.118585http://dx.doi.org/10.1016/j.jlumin.2021.118585
CHERNOV V, SALAS-CASTILLO P, DÍAZ-TORRES L A, et al. Thermoluminescence and infrared stimulated luminescence in long persistent monoclinic SrAl2O4∶Eu2+, Dy3+ and SrAl2O4∶Eu2+, Nd3+ phosphors [J]. Opt. Mater., 2019, 92: 46-52. doi: 10.1016/j.optmat.2019.04.015http://dx.doi.org/10.1016/j.optmat.2019.04.015
LI P P, TIAN Y, HUANG F F, et al. Highly efficient photostimulated luminescence of Pb2+ doped SrAl2O4∶Eu2+, Dy3+ borate glass for long-term stable optical information storage [J]. J. Eur. Ceram. Soc., 2022, 42(12): 5065-5073. doi: 10.1016/j.jeurceramsoc.2022.05.033http://dx.doi.org/10.1016/j.jeurceramsoc.2022.05.033
GNIDAKOUONG J R N, YUN G J. Dislocation density level induced divergence between stress-free afterglow and mechanoluminescence in SrAl2O4∶Eu2+, Dy3+ [J]. Ceram. Int., 2019, 45(2): 1794-1802. doi: 10.1016/j.ceramint.2018.10.066http://dx.doi.org/10.1016/j.ceramint.2018.10.066
VITOLA V, MILLERS D, BITE I, et al. Recent progress in understanding the persistent luminescence in SrAl2O4∶Eu, Dy [J]. Mater. Sci. Technol., 2019, 35(14): 1661-1677. doi: 10.1080/02670836.2019.1649802http://dx.doi.org/10.1080/02670836.2019.1649802
HUANG Z F, CHEN B, REN B Y, et al. Smart mechanoluminescent phosphors: a review of strontium-aluminate-based materials, properties, and their advanced application technologies [J]. Adv. Sci., 2023, 10(3): 2204925. doi: 10.1002/advs.202204925http://dx.doi.org/10.1002/advs.202204925
MENG M, CAI P B, FU X Y., et al. Sensitive mechanoluminescence from Eu2+, Tm3+ co-doped Sr3Al2O5Cl2 phosphors [J]. J. Lumin., 2022, 248: 118983. doi: 10.1016/j.jlumin.2022.118983http://dx.doi.org/10.1016/j.jlumin.2022.118983
SIKANDAR M A, AHMAD W, KHAN M H, et al. Effect of water resistant SiO2 coated SrAl2O4∶Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes [J]. Constr. Build. Mater., 2019, 228: 116823. doi: 10.1016/j.conbuildmat.2019.116823http://dx.doi.org/10.1016/j.conbuildmat.2019.116823
VITOLA V, MILLERS D, SMITS K, et al. The search for defects in undoped SrAl2O4 material [J]. Opt. Mater., 2019, 87: 48-52. doi: 10.1016/j.optmat.2018.06.004http://dx.doi.org/10.1016/j.optmat.2018.06.004
0
Views
89
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution