浏览全部资源
扫码关注微信
太原科技大学 应用科学学院, 山西省光场调控与融合应用技术创新中心, 山西 太原 030024
Published:05 November 2023,
Received:03 September 2023,
Revised:14 September 2023,
移动端阅览
刘子江,苗润泽,任卫杰等.氮和硼元素共掺杂对碳点荧光的调控机制[J].发光学报,2023,44(11):1981-1989.
LIU Zijiang,MIAO Runze,REN Weijie,et al.Regulations of N and B Co-doping on Carbon Dots Fluorescence[J].Chinese Journal of Luminescence,2023,44(11):1981-1989.
刘子江,苗润泽,任卫杰等.氮和硼元素共掺杂对碳点荧光的调控机制[J].发光学报,2023,44(11):1981-1989. DOI: 10.37188/CJL.20230199.
LIU Zijiang,MIAO Runze,REN Weijie,et al.Regulations of N and B Co-doping on Carbon Dots Fluorescence[J].Chinese Journal of Luminescence,2023,44(11):1981-1989. DOI: 10.37188/CJL.20230199.
元素掺杂对调节碳点多色发光有着至关重要的作用。然而,目前碳点的可调荧光发射在固态下难以实现,这是因为会发生严重的聚集诱导猝灭(AIQ)现象以及存在制备工艺繁琐等问题。本文报道了一种以间苯三酚为碳源、硼酸为硼元素掺杂剂、尿素为氮元素掺杂剂,采用固相法,微波一步直接制备的氮硼共掺杂固态荧光碳点。随着氮和硼元素含量的变化,所得固态碳点的发光颜色经历黄色、绿色到蓝色的变化。表征分析发现氮和硼元素的掺杂在碳点表面形成了不同的结构和表面官能团,随着氮和硼元素掺杂含量的提高,其中石墨氮、N—C以及B—O/B—N 基团的协同作用导致了碳点发光颜色蓝移,且荧光发光效率增强。此外,鉴于这些固体碳点材料呈现出优异的多色发光性能,选择发光性能最佳的黄色、绿色和蓝色固态荧光碳点作为固态荧光粉末,制备得到了白光发光二极管(WLED)器件。这些器件均具有优良的色度指标,暖白光区发光和个别器件节能高效的工作特性表明这些发光材料在照明领域具有潜在应用前景。
Element doping plays an important role in regulating multicolor luminescence of the carbon dots. However, it is difficult to realize the tunable fluorescence emission of carbon dots in solid state due to serious aggregation induced quenching effect (AIQ) and complicated preparation process. Herein, a kind of nitrogen and boron elements co-doped solid-state fluorescent carbon dots was synthesized by microwave reaction using phloroglucinol as carbon source, boric acid as boron dopant and urea as nitrogen dopant. With the change of nitrogen and boron elements content, the luminescent color of the obtained solid-state carbon dots undergoes variations from yellow, green to blue. After the characterization, it was found that the doping of nitrogen and boron elements formed different structures and new functional groups on the surface of the carbon dots, in which the synergistic effect of graphitic nitrogen, N—C and B—O/B—N bonds led to a blue-shift change of luminescent colors and the increasing fluorescence quantum yields (FLQYs) with the increasing contents of nitrogen and boron dopants in these solid-state carbon dots. In addition, given that these solid-state carbon dots materials exhibited excellent multicolor luminescence properties, yellow, green and blue solid-state fluorescent carbon dots with the best luminescence performance after optimizing fabricated WLED devices with excellent chromaticity indexes. The warm-white light and energy-saving and efficient working characteristics in the some devices indicate that these carbon dots materials possess potential application in the field of lighting.
固态碳点氮硼共掺杂发光调控发光二极管
solid-state CDotsN and B co-dopingluminescence regulationLED
FENG T L, ZHU S J, ZENG Q S, et al. Supramolecular cross-link-regulated emission and related applications in polymer carbon dots [J]. ACS Appl. Mater. Interfaces, 2018, 10(15): 12262-12277. doi: 10.1021/acsami.7b14857http://dx.doi.org/10.1021/acsami.7b14857
MIAO X, QU D, YANG D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization [J]. Adv. Mater., 2018, 30(1): 1704740. doi: 10.1002/adma.201704740http://dx.doi.org/10.1002/adma.201704740
TIAN Z, ZHANG X T, LI D, et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes [J]. Adv. Opt. Mater., 2017, 5(19): 1700416. doi: 10.1002/adom.201700416http://dx.doi.org/10.1002/adom.201700416
CHAO D Y, CHEN J X, DONG Q, et al. Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials [J]. Nano Res., 2020, 13(11): 3012-3018. doi: 10.1007/s12274-020-2965-8http://dx.doi.org/10.1007/s12274-020-2965-8
LIU J C, WANG N, YU Y, et al. Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes [J]. Sci. Adv., 2017, 3(5): 1603171. doi: 10.1126/sciadv.1603171http://dx.doi.org/10.1126/sciadv.1603171
QU S N, SHEN D Z, LIU X Y, et al. Highly luminescent carbon-nanoparticle-based materials: factors influencing photoluminescence quantum yield [J]. Part. Part. Syst. Charact., 2014, 31(11): 1175-1182. doi: 10.1002/ppsc.201400055http://dx.doi.org/10.1002/ppsc.201400055
NIU X Q, SONG T B, XIONG H M. Large scale synthesis of red emissive carbon dots powder by solid state reaction for fingerprint identification [J]. Chin. Chem. Lett., 2021, 32(6): 1953-1956. doi: 10.1016/j.cclet.2021.01.006http://dx.doi.org/10.1016/j.cclet.2021.01.006
WANG J L, LI Q, ZHENG J X, et al. N, B-codoping induces high-efficiency solid-state fluorescence and dual emission of yellow/orange carbon dots [J]. ACS Sustainable Chem. Eng., 2021, 9(5): 2224-2236. doi: 10.1021/acssuschemeng.0c07992http://dx.doi.org/10.1021/acssuschemeng.0c07992
DING Y F, WANG X L, TANG M, et al. Tailored fabrication of carbon dot composites with full-color ultralong room-temperature phosphorescence for multidimensional encryption [J]. Adv. Sci. (Weinh.), 2022, 9(3): 2103833. doi: 10.1002/advs.202103833http://dx.doi.org/10.1002/advs.202103833
CUI S Q, WANG B W, ZAN Y X, et al. Colorful, time-dependent carbon dot-based afterglow with ultralong lifetime [J]. Chem. Eng. J., 2022, 431: 133373. doi: 10.1016/j.cej.2021.133373http://dx.doi.org/10.1016/j.cej.2021.133373
LI Q J, ZHAO Z X, MENG S, et al. Ultra-strong phosphorescence with 48% quantum yield from grinding treated thermal annealed carbon dots and boric acid composite [J]. SmartMat, 2022, 3(2): 260-268. doi: 10.1002/smm2.1075http://dx.doi.org/10.1002/smm2.1075
吕播瑞, 崔俊超, 徐文军, 等. 邻苯二甲酸结晶诱导荧光碳点制备及其在白光发光二极管中的应用 [J]. 发光学报, 2022, 43(4): 528-535. doi: 10.37188/CJL.20220003http://dx.doi.org/10.37188/CJL.20220003
LV B R, CUI J C, XU W J, et al. Crystalline(phthalic acid)-induced luminescence of carbon dots for white-light-emitting diode devices [J]. Chin. J. Lumin., 2022, 43(4): 528-535. (in Chinese). doi: 10.37188/CJL.20220003http://dx.doi.org/10.37188/CJL.20220003
WANG Y C, JIANG K, DU J R, et al. Green and near-infrared dual-mode afterglow of carbon dots and their applications for confidential information readout [J]. Nano⁃Micro Lett., 2021, 13: 198. doi: 10.1007/s40820-021-00718-zhttp://dx.doi.org/10.1007/s40820-021-00718-z
张学文, 苗润泽, 许凤利, 等. 晶相对碳点多色发光的调制及其在白光发光二极管器件中的应用 [J]. 发光学报, 2023, 44(2): 298-306. doi: 10.37188/CJL.20220316http://dx.doi.org/10.37188/CJL.20220316
ZHANG X W, MIAO R Z, XU F L, et al. Crystalline phase-tuned multicolor luminescence of carbon dots for white-light-emitting diode devices [J]. Chin. J. Lumin., 2023, 44(2): 298-306. (in Chinese). doi: 10.37188/CJL.20220316http://dx.doi.org/10.37188/CJL.20220316
ZHUO K L, SUN D, XU P P, et al. Green synthesis of sulfur-and nitrogen-co-doped carbon dots using ionic liquid as a precursor and their application in Hg2+ detection [J]. J. Lumin., 2017, 187: 227-234. doi: 10.1016/j.jlumin.2017.03.022http://dx.doi.org/10.1016/j.jlumin.2017.03.022
DONG Y Q, SHAO J W, CHEN C Q, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J]. Carbon, 2012, 50(12): 4738-4743. doi: 10.1016/j.carbon.2012.06.002http://dx.doi.org/10.1016/j.carbon.2012.06.002
LI S, WU M, KANG Y, et al. Grinding-triggered single crystal-to-single crystal transformation of a zinc(II) complex: mechanochromic luminescence and aggregation-induced emission properties [J]. Inorg. Chem., 2019, 58(7): 4626-4633. doi: 10.1021/acs.inorgchem.9b00195http://dx.doi.org/10.1021/acs.inorgchem.9b00195
HUANG L L, LIU L, LI X J, et al. Crystal-state photochromism and dual-mode mechanochromism of an organic molecule with fluorescence, room-temperature phosphorescence, and delayed fluorescence [J]. Angew. Chem. Int. Ed., 2019, 58(46): 16445-16450. doi: 10.1002/anie.201908567http://dx.doi.org/10.1002/anie.201908567
FAN R J, SUN Q, ZHANG L, et al. Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging [J]. Carbon, 2014, 71: 87-93. doi: 10.1016/j.carbon.2014.01.016http://dx.doi.org/10.1016/j.carbon.2014.01.016
HU X H, AN X Q, LI L L. Easy synthesis of highly fluorescent carbon dots from albumin and their photoluminescent mechanism and biological imaging applications [J]. Mater. Sci. Eng. C, 2016, 58: 730-736. doi: 10.1016/j.msec.2015.09.066http://dx.doi.org/10.1016/j.msec.2015.09.066
NGUYEN V, SI J H, YAN L H, et al. Electron-hole recombination dynamics in carbon nanodots [J]. Carbon, 2015, 95: 659-663. doi: 10.1016/j.carbon.2015.08.066http://dx.doi.org/10.1016/j.carbon.2015.08.066
GUO H Z, LIU Z K, SHEN X Y, et al. One-pot synthesis of orange emissive carbon quantum dots for all-type high color rendering index white light-emitting diodes [J]. ACS Sustainable Chem. Eng., 2022, 10(26): 8289-8296. doi: 10.1021/acssuschemeng.2c00715http://dx.doi.org/10.1021/acssuschemeng.2c00715
GUO H Z, ZHANG X, CHEN Z Y, et al. High-energy short-wave blue light conversion films via carbon quantum dots for preventing retinal photochemical damage [J]. Carbon, 2022, 199: 431-438. doi: 10.1016/j.carbon.2022.08.003http://dx.doi.org/10.1016/j.carbon.2022.08.003
ZHAN Y, SHANG B, CHEN M, et al. One-step synthesis of silica-coated carbon dots with controllable solid-state fluorescence for white light-emitting diodes [J]. Small, 2019, 15(24): 1901161. doi: 10.1002/smll.201901161http://dx.doi.org/10.1002/smll.201901161
YANG J, LIU Y, WANG J, et al. Visual multiple color emission of solid-state carbon dots [J]. J. Phys. Chem. C, 2019, 7(25): 7806-7811. doi: 10.1039/c9tc01638dhttp://dx.doi.org/10.1039/c9tc01638d
0
Views
181
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution