MIN Hua,LIU Li,XIA Jiji,et al.Preparation and Sensing Detection Application of Lanthanide Eu3+/PMMA Polymer Hybrid Probe[J].Chinese Journal of Luminescence,2023,44(11):2076-2080.
MIN Hua,LIU Li,XIA Jiji,et al.Preparation and Sensing Detection Application of Lanthanide Eu3+/PMMA Polymer Hybrid Probe[J].Chinese Journal of Luminescence,2023,44(11):2076-2080. DOI: 10.37188/CJL.20230179.
Preparation and Sensing Detection Application of Lanthanide Eu3+/PMMA Polymer Hybrid Probe增强出版
In this paper, a polymer-based rare earth hybrid probe functionalized by Eu
3+
was designed and synthesized. The coordination reaction between benzoyl trifluoroacetone (BFA) and lanthanide Eu
3+
was used to obtain the complex Eu(BFA)
3
, which was further prepared by polymerization with MMA monomer to obtain polymer hybrid probe Eu(BFA)
3
@PMMA. The structure and fluorescence properties of Eu(BFA)
3
@PMMA were investigated in detail. It is also used in the sensor detection of tumor marker sialic acid (SA). The results showed that SA can produce a significant quenching effect on the fluorescence of Eu(BFA)
3
@PMMA. In addition, fluorescence properties contrast experiments at excitation wavelength of 325 nm showed that Eu(BFA)
3
@PMMA had strong selectivity and anti-interference ability for SA, and the detection limit was low.
CHEN S N, CHANG R, LIN L T, et al. MicroRNA in ovarian cancer: biology, pathogenesis, and therapeutic opportunities [J]. Int. J. Environ. Res. Public Health, 2019, 16(9): 1510. doi: 10.3390/ijerph16091510http://dx.doi.org/10.3390/ijerph16091510
DALL'OLIO F, CHIRICOLO M. Sialyltransferases in cancer [J]. Glycoconj. J., 2001, 18(11): 841-850. doi: 10.1023/a:1022288022969http://dx.doi.org/10.1023/a:1022288022969
REGUEIRO-FIGUEROA M, DJANASHVILI K, ESTEBAN-GÓMEZ D, et al. Molecular recognition of sialic acid by lanthanide(III) complexes through cooperative two-site binding [J]. Inorg. Chem., 2010, 49(9): 4212-4223. doi: 10.1021/ic902461ghttp://dx.doi.org/10.1021/ic902461g
LI S, LIU J L, LU Y L, et al. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection [J]. Biosens. Bioelectron., 2018, 117: 32-39. doi: 10.1016/j.bios.2018.05.062http://dx.doi.org/10.1016/j.bios.2018.05.062
JAYEOYE T J, CHEEWASEDTHAM W, PUTSON C, et al. Colorimetric determination of sialic acid based on boronic acid-mediated aggregation of gold nanoparticles [J]. Microchim. Acta, 2018, 185(9): 409. doi: 10.1007/s00604-018-2951-yhttp://dx.doi.org/10.1007/s00604-018-2951-y
YAO J J, YANG Y, GU X X, et al. The development of photoelectrochemical method for specific detection of sialic acid based on SnO2/TiO2/Au NPs [J]. J. Shanghai Norm. Univ. (Nat. Sci.), 2021, 50(6): 663-671. (in Chinese)
HAO J N, LI Y S. Concurrent modulation of competitive mechanisms to design stimuli-responsive Ln-MOFs: a light-operated dual-mode assay for oxidative DNA damage [J]. Adv. Funct. Mater., 2019, 29(36): 1903058. doi: 10.1002/adfm.201903058http://dx.doi.org/10.1002/adfm.201903058
HOU S L, DONG J, TANG M H, et al. Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated pH luminescent probe [J]. Anal. Chem., 2019, 91(8): 5455-5460. doi: 10.1021/acs.analchem.9b00848http://dx.doi.org/10.1021/acs.analchem.9b00848
LIU K, ZHANG J, XU L, et al. Film-based fluorescence sensing: a “chemical nose” for nicotine [J]. Chem. Commun., 2019, 55(84): 12679-12682. doi: 10.1039/c9cc06771jhttp://dx.doi.org/10.1039/c9cc06771j
ZHOU Y, ZHANG D N, XING W Z, et al. Ratiometric and turn-on luminescence detection of water in organic solvents using a responsive europium-organic framework [J]. Anal. Chem., 2019, 91(7): 4845-4851. doi: 10.1021/acs.analchem.9b00493http://dx.doi.org/10.1021/acs.analchem.9b00493
WU T, BOUŘ P. Specific circularly polarized luminescence of Eu(Ⅲ), Sm(Ⅲ), and Er(Ⅲ) induced by N-acetylneuraminic acid [J]. Chem. Commun., 2018, 54(14): 1790-1792. doi: 10.1039/c7cc09463ahttp://dx.doi.org/10.1039/c7cc09463a
HEFFERN M C, MATOSZIUK L M, MEADE T J. Lanthanide probes for bioresponsive imaging [J]. Chem. Rev., 2014, 114(8): 4496-4539. doi: 10.1021/cr400477thttp://dx.doi.org/10.1021/cr400477t
BUNZLI J C G. Lanthanide luminescence for biomedical analyses and imaging [J]. Chem. Rev., 2010, 110(5): 2729-2755. doi: 10.1021/cr900362ehttp://dx.doi.org/10.1021/cr900362e
LIANG Y. Research on the Application of Antenna Effect Based on Europium (Ⅲ) Coordination Polymer Particles in Pharmaceutical Analysis [D]. Chongqing: Southwest University, 2021. (in Chinese). doi: 10.1016/j.talanta.2021.122270http://dx.doi.org/10.1016/j.talanta.2021.122270
GUO C F. Progress on luminescent materials of rare-earth europium complexes [J]. Guangzhou Chem., 2018, 43(5): 68-72. (in Chinese). doi: 10.16560/j.cnki.gzhx.20180511http://dx.doi.org/10.16560/j.cnki.gzhx.20180511
OUCHI K, SAITO S, SHIBUKAWA M. New molecular motif for recognizing sialic acid using emissive lanthanide-macrocyclic polyazacarboxylate complexes: deprotonation of a coordinated water molecule controls specific binding [J]. Inorg. Chem., 2013, 52(11): 6239-6241. doi: 10.1021/ic400725ahttp://dx.doi.org/10.1021/ic400725a
ZENG Y, QIU B, WANG F F, et al. Transparent films based on functionalized poly (ionic liquids) coordinating to photoactive lanthanide (Eu3+, Tb3+) and poly (methyl methacrylate): luminescence and chemical sensing [J]. Opt. Mater., 2020, 107: 110149. doi: 10.1016/j.optmat.2020.110149http://dx.doi.org/10.1016/j.optmat.2020.110149
LIU D, WANG Z G. Synthesis and fluorescence properties of polymer rare earth complexes [J]. Polym. Bull., 2011(9): 92-99. (in Chinese). doi: 10.1002/pi.2810http://dx.doi.org/10.1002/pi.2810
Microfluidic Photodynamic Therapy Based on Singlet Oxygen Fluorescence Sensing
Food Safety Detection Using Aggregation-induced Emission Materials
Preparation of Fluorescent pH Nanosensor Based on Flourescein Isothiocyanate
Application of SrAl2O4: Eu,Ho/Resin Mechanoluminescence Thin Film in Visualization Detection of Weld Seam Defects
Related Author
TANG Si-yi
XIA Ji-ji
MIN Hua
PENG hongshang
SUN Yuran
Qi WANG
Wei-hong ZHU
Yan-ting LYU
Related Institution
School of Science, Minzu University of China
Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology
Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications
School of Materials Science and Engineering, Xiamen University of Technology, Key Laboratory of Functional Materials and Applications of Fujian Province
Institute of Urban Environment, Chinese Academy of Sciences