浏览全部资源
扫码关注微信
1.陕西理工大学 材料科学与工程学院, 陕西 汉中 723000
2.航空工业陕西飞机工业有限责任公司, 陕西 汉中 723200
Published:05 November 2023,
Received:29 July 2023,
Revised:21 August 2023,
移动端阅览
丁镠,康守旺,王羽等.氮、硫掺杂具有聚集诱导发光绿色碳点的制备与表征[J].发光学报,2023,44(11):2002-2010.
DING Liu,KANG Shouwang,WANG Yu,et al.Preparation and Characterization of Nitrogen and Sulfur Doped Green Carbon Dots with Aggregation-induced Emission[J].Chinese Journal of Luminescence,2023,44(11):2002-2010.
丁镠,康守旺,王羽等.氮、硫掺杂具有聚集诱导发光绿色碳点的制备与表征[J].发光学报,2023,44(11):2002-2010. DOI: 10.37188/CJL.20230177.
DING Liu,KANG Shouwang,WANG Yu,et al.Preparation and Characterization of Nitrogen and Sulfur Doped Green Carbon Dots with Aggregation-induced Emission[J].Chinese Journal of Luminescence,2023,44(11):2002-2010. DOI: 10.37188/CJL.20230177.
由于聚集诱导猝灭效应(ACQ)的存在极大地限制了碳点(CDs)在固态领域的应用,本文采用环保、低成本的一步溶剂热法制备了一类氮/硫掺杂具有高荧光量子产率(PLQY)和AIE效应的新型CDs(G⁃CDs),并对其结构和光学性质进行了分析和表征。G⁃CDs在溶液中表现出蓝色发射(
λ
=400 nm),而在聚集状态或粉末态下则表现为绿色发射(
λ
=500 nm),并测得粉末的PLQY为48.6%。随着水的浓度增加,G⁃CDs发生聚集荧光发射红移,证实了CDs的AIE特性。基于这种独特的双发射特点和AIE效应,G⁃CDs在信息加密、油墨印刷和发光照明方面具有重要的应用潜力。
Due to the existence of aggregation-caused quenching (ACQ) effect, the application of carbon dots (CDs) in the solid state field is greatly limited. Herein, a new class of nitrogen/sulfur-doped CDs (G-CDs) with high fluorescence quantum yield (PLQY) and AIE effect are obtained with an eco-friendly, low-cost one-pot solvothermal method, and the structure and properties were analyzed and characterized. G-CDs exhibit blue emission (
λ
=400 nm) in organic solvents while after adding water, because of AIE effect. G-CDs in the aggregated state manifested as green emission, and the PLQY of the powder was measured to be 48.6%. With the increase of water concentration, the aggregation fluorescence emission of G-CDs was red-shifted, which confirmed the AIE characteristics of CDs. Based on the unique emission fluorescence and AIE effect, G-CDs have important potential applications in information encryption, ink printing and luminescent lighting.
碳点聚集诱导猝灭(ACQ)聚集诱导发射(AIE)防伪应用
carbon dotsaggregation-caused quenchingaggregation-induced emissionanti-counterfeiting applications
PENG H, TRAVAS-SEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates [J]. Chem. Mater., 2009, 21(23): 5563-5565. doi: 10.1021/cm901593yhttp://dx.doi.org/10.1021/cm901593y
SON D I, KWON B W, PARK D H, et al. Emissive ZnO-graphene quantum dots for white-light-emitting diodes [J]. Nat. Nanotechnol., 2012, 7(7): 465-471. doi: 10.1038/nnano.2012.71http://dx.doi.org/10.1038/nnano.2012.71
ZHENG X T, ANANTHANARAYANAN A, LUO K Q, et al. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications [J]. Small, 2015, 11(14): 1620-1636. doi: 10.1002/smll.201402648http://dx.doi.org/10.1002/smll.201402648
KHAN S, GUPTA A, VERMA N C, et al. Time-resolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots [J]. Nano Lett., 2015, 15(12): 8300-8305. doi: 10.1021/acs.nanolett.5b03915http://dx.doi.org/10.1021/acs.nanolett.5b03915
LI S, LI L, TU H Y, et al. The development of carbon dots: from the perspective of materials chemistry [J]. Mater. Today, 2021, 51: 188-207. doi: 10.1016/j.mattod.2021.07.028http://dx.doi.org/10.1016/j.mattod.2021.07.028
YAN J A, XIAN L, CHOU M Y. Structural and electronic properties of oxidized graphene [J]. Phys. Rev. Lett., 2009, 103(8): 086802. doi: 10.1103/physrevlett.103.086802http://dx.doi.org/10.1103/physrevlett.103.086802
JIANG K, GAO X L, FENG X Y, et al. Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics [J]. Angew. Chem. Int. Ed., 2020, 59(3): 1263-1269. doi: 10.1002/anie.201911342http://dx.doi.org/10.1002/anie.201911342
李迪, 孟李, 曲松楠. 氮掺杂碳纳米点的研究进展 [J]. 中国光学, 2020, 13(5): 899-918. doi: 10.37188/CO.2020-0035http://dx.doi.org/10.37188/CO.2020-0035
LI D, MENG L, QU S N. Research progress on nitrogen-doped carbon nanodots [J]. Chin. Opt., 2020, 13(5): 899-918. (in Chinese). doi: 10.37188/CO.2020-0035http://dx.doi.org/10.37188/CO.2020-0035
RASOULZADEH M, NAMAZI H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent [J]. Carbohydr. Polym., 2017, 168: 320-326. doi: 10.1016/j.carbpol.2017.03.014http://dx.doi.org/10.1016/j.carbpol.2017.03.014
ZHU J Y, BAI X, CHEN X, et al. Carbon dots with efficient solid-state red-light emission through the step-by-step surface modification towards light-emitting diodes [J]. Dalton Trans., 2018, 47(11): 3811-3818. doi: 10.1039/c7dt04579dhttp://dx.doi.org/10.1039/c7dt04579d
LI Q J, ZHOU M, YANG M Y, et al. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices [J]. Nat. Commun., 2018, 9(1): 734. doi: 10.1038/s41467-018-03144-9http://dx.doi.org/10.1038/s41467-018-03144-9
ZHOU D, ZHAI Y C, QU S N, et al. Electrostatic assembly guided synthesis of highly luminescent carbonnanodots@BaSO4 hybrid phosphors with improved stability [J]. Small, 2017, 13(6): 1602055. doi: 10.1002/smll.201602055http://dx.doi.org/10.1002/smll.201602055
SUZUKI K, TAKAHASHI M, MALFATTI L, et al. Carbon dots in ZnO macroporous films with controlled photoluminescence through defects engineering [J]. RSC Adv., 2016, 6(60): 55393-55400. doi: 10.1039/c6ra09479ahttp://dx.doi.org/10.1039/c6ra09479a
ZHENG J X, WANG Y L, ZHANG F, et al. Microwave-assisted hydrothermal synthesis of solid-state carbon dots with intensive emission for white light-emitting devices [J]. J. Mater. Chem. C, 2017, 5(32): 8105-8111. doi: 10.1039/c7tc01701dhttp://dx.doi.org/10.1039/c7tc01701d
ZHANG Y Q, ZHUO P, YIN H, et al. Solid-state fluorescent carbon dots with aggregation-induced yellow emission for white light-emitting diodes with high luminous efficiencies [J]. ACS Appl. Mater. Interfaces, 2019, 11(27): 24395-24403. doi: 10.1021/acsami.9b04600http://dx.doi.org/10.1021/acsami.9b04600
YU J K, YONG X, TANG Z Y, et al. Theoretical understanding of structure-property relationships in luminescence of carbon dots [J]. J. Phys. Chem. Lett., 2021, 12(32): 7671-7687. doi: 10.1021/acs.jpclett.1c01856http://dx.doi.org/10.1021/acs.jpclett.1c01856
曲彦霏, 李迪, 曲松楠. 抗聚集诱导荧光猝灭的固态发光碳纳米点: 制备、光物理性质及应用 [J]. 发光学报, 2021, 42(8): 1141-1154. doi: 10.37188/CJL.20210174http://dx.doi.org/10.37188/CJL.20210174
QU Y F, LI D, QU S N. Solid-state luminescent carbon dots resistant to aggregation-induced fluorescence quenching: preparation, photophysical properties and applications [J]. Chin. J. Lumin., 2021, 42(8): 1141-1154. (in Chinese). doi: 10.37188/CJL.20210174http://dx.doi.org/10.37188/CJL.20210174
LI X J, ZHENG M D, WANG H J, et al. Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping [J]. J. Colloid Interface Sci., 2022, 609: 54-64. doi: 10.1016/j.jcis.2021.11.179http://dx.doi.org/10.1016/j.jcis.2021.11.179
YANG H Y, LIU Y L, GUO Z Y, et al. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission [J]. Nat. Commun., 2019, 10(1): 1789. doi: 10.1038/s41467-019-09830-6http://dx.doi.org/10.1038/s41467-019-09830-6
DONG Y Q, SHAO J W, CHEN C Q, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J]. Carbon, 2012, 50(12): 4738-4743. doi: 10.1016/j.carbon.2012.06.002http://dx.doi.org/10.1016/j.carbon.2012.06.002
DANG D K, NGUYEN V N, TAHIR Z, et al. An efficient green approach to constructing adenine sulfate-derived multicolor sulfur- and nitrogen-codoped carbon dots and their bioimaging applications [J]. ACS Appl. Mater. Interfaces, 2023, 15(27): 32783-32791. doi: 10.1021/acsami.3c06093http://dx.doi.org/10.1021/acsami.3c06093
WU M Y, LI J R, WU Y Z, et al. Design of a synthetic strategy to achieve enhanced fluorescent carbon dots with sulfur and nitrogen codoping and its multifunctional applications [J]. Small, 2023,19(42): 2302764. doi: 10.1002/smll.202302764http://dx.doi.org/10.1002/smll.202302764
TANG L B, JI R B, CAO X K, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots [J]. ACS Nano, 2012, 6(6): 5102-5110. doi: 10.1021/nn300760ghttp://dx.doi.org/10.1021/nn300760g
GONG X J, PAAU M C, HU Q, et al. UHPLC combined with mass spectrometric study of as-synthesized carbon dots samples [J]. Talanta, 2016, 146: 340-350. doi: 10.1016/j.talanta.2015.08.051http://dx.doi.org/10.1016/j.talanta.2015.08.051
王子儒, 张光华, 郭明媛. N掺杂碳量子点光稳定剂的制备及光学性能 [J]. 发光学报, 2016, 37(6): 655-661. doi: 10.3788/fgxb20163706.0655http://dx.doi.org/10.3788/fgxb20163706.0655
WANG Z R, ZHANG G H, GUO M Y. Preparation and optical properties of N-doped carbon dots as light stabilizer [J]. Chin. J. Lumin., 2016, 37(6): 655-661. (in Chinese). doi: 10.3788/fgxb20163706.0655http://dx.doi.org/10.3788/fgxb20163706.0655
ZHANG Y, HE Y H, CUI P P, et al. Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg2+ in aqueous solution [J]. RSC Adv., 2015, 5(50): 40393-40401. doi: 10.1039/c5ra04653jhttp://dx.doi.org/10.1039/c5ra04653j
SUN M Y, QU S N, HAO Z D, et al. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites [J]. Nanoscale, 2014, 6(21): 13076-13081. doi: 10.1039/c4nr04034ahttp://dx.doi.org/10.1039/c4nr04034a
LI J, GONG X. One-step large-scale fabricating aggregation-induced emission carbon dots with strong solid-state fluorescence emission [J]. Mater. Today Chem., 2022, 26: 101255. doi: 10.1016/j.mtchem.2022.101255http://dx.doi.org/10.1016/j.mtchem.2022.101255
LIU Y, ZHANG M R, WU Y F, et al. Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes [J]. Chem. Commun., 2019, 55(81): 12164-12167. doi: 10.1039/c9cc05581ahttp://dx.doi.org/10.1039/c9cc05581a
郭振振, 唐玉国, 孟凡渝, 等. 荧光碳量子点的制备与生物医学应用研究进展 [J]. 中国光学, 2018, 11(3): 431-443. doi: 10.3788/co.20181103.0431http://dx.doi.org/10.3788/co.20181103.0431
GUO Z Z, TANG Y G, MENG F Y, et al. Advances in preparation and biomedical applications of fluorescent carbon quantum dots [J]. Chin. Opt., 2018, 11(3): 431-443. (in Chinese). doi: 10.3788/co.20181103.0431http://dx.doi.org/10.3788/co.20181103.0431
ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging [J]. Angew. Chem. Int. Ed., 2013, 52(14): 3953-3957. doi: 10.1002/anie.201300519http://dx.doi.org/10.1002/anie.201300519
DING L, JIN X L, GAO Y C, et al. Facile preparation strategy of novel carbon dots with aggregation‐induced emission and room‐temperature phosphorescence characteristics [J]. Adv. Opt. Mater., 2023, 11(5): 2202349. doi: 10.1002/adom.202202349http://dx.doi.org/10.1002/adom.202202349
AI L, SONG Z Q, NIE M J, et al. Solid‐state fluorescence from carbon dots widely tunable from blue to deep red through surface ligand modulation [J]. Angew. Chem., 2023, 135(12): e202217822. doi: 10.1002/ange.202217822http://dx.doi.org/10.1002/ange.202217822
ARSHAD F, SK P. Aggregation-induced red shift in N, S-doped chiral carbon dot emissions for moisture sensing [J]. New J. Chem., 2019, 43(33): 13240-13248. doi: 10.1039/c9nj03009chttp://dx.doi.org/10.1039/c9nj03009c
0
Views
215
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution