浏览全部资源
扫码关注微信
1.青海大学 机械工程学院, 青海 西宁 810016
2.中国地质大学(北京) 材料科学与工程学院, 北京 100083
Published:05 November 2023,
Received:07 August 2023,
Revised:17 August 2023,
移动端阅览
高华波,陈奇,陈文超等.新型Ba3In(PO4)3∶Yb3+,Ho3+荧光粉的上转换发光及其温度传感性能[J].发光学报,2023,44(11):1958-1966.
GAO Huabo,CHEN Qi,CHEN Wenchao,et al.Up-conversion Luminescence and Temperature Sensing Performance of Novel Ba3In(PO4)3∶Yb3+, Ho3+ Phosphor[J].Chinese Journal of Luminescence,2023,44(11):1958-1966.
高华波,陈奇,陈文超等.新型Ba3In(PO4)3∶Yb3+,Ho3+荧光粉的上转换发光及其温度传感性能[J].发光学报,2023,44(11):1958-1966. DOI: 10.37188/CJL.20230175.
GAO Huabo,CHEN Qi,CHEN Wenchao,et al.Up-conversion Luminescence and Temperature Sensing Performance of Novel Ba3In(PO4)3∶Yb3+, Ho3+ Phosphor[J].Chinese Journal of Luminescence,2023,44(11):1958-1966. DOI: 10.37188/CJL.20230175.
采用高温固相法合成了一种新型的Yb
3+
和Ho
3+
共掺杂的Ba
3
In(PO
4
)
3
上转换荧光粉,并研究了其晶体结构、上转换发光及能量传递机制。在980 nm激光激发下,Yb
3+
吸收能量并传递至Ho
3+
;此外,激光功率对于荧光粉发光颜色无明显影响,发光颜色主要集中在橙黄色区域(0.543,0.452)。测得0.05Yb
3+
和0.032Ho
3+
掺杂的荧光粉的荧光寿命约为467.61 μs。还测量了该荧光粉温度依赖的发光光谱,并计算了其用作光学温度计的绝对灵敏度(
S
a
)和相对灵敏度(
S
r
)。结果表明,该荧光粉具有良好的热稳定性,423 K时的发射强度仍保持在室温的81.68%,
5
S
2
,
5
F
4
→
5
I
8
、
5
F
5
→
5
I
8
跃迁的Δ
E
分别约为0.19 eV和0.27 eV。此外,其
S
a
和
S
r
最大值分别为0.31%·K
-1
和0.09%·K
-1
(573 K)。
In this work, a novel Yb
3+
and Ho
3+
co-doped Ba
3
In(PO
4
)
3
up-conversion phosphor was synthesized by high temperature solid-state method, and its crystal structure, up-conversion luminescence and energy transfer mechanism were studied. Under 980 nm laser excitation, Yb
3+
absorbs energy and transfers to Ho
3+
.In addition, the laser power has no significant effect on the luminescent color of the phosphor, and the luminescent color is mainly concentrated in the orange-red region (0.543, 0.452). The fluorescence lifetime of 0.05Yb
3+
and 0.032Ho
3+
doped phosphor is about 467.61 μs. The temperature-dependent photoluminescence emission spectra of the phosphor were also measured, and the absolute sensitivity (
S
a
) and relative sensitivity (
S
r
) were calculated. The results show that the phosphor has good thermal stability, and the emission intensity at 423 K remains about 81.68% of that at room temperature. The Δ
E
of
5
S
2
,
5
F
4
→
5
I
8
,
5
F
5
→
5
I
8
transitions are 0.19 eV and 0.27 eV, respectively.In addition, the maximum
S
a
and
S
r
are 0.31%·K
-1
and 0.09%·K
-1
(573 K), respectively.
荧光粉上转换发光温度传感性能
phosphorup-conversion luminescencetemperature sensing performance
ZHOU J, LIU Q, FENG W, et al. Upconversion luminescent materials: Advances and applications [J]. Chem. Rev., 2015, 115(1): 395-465. doi: 10.1021/cr400478fhttp://dx.doi.org/10.1021/cr400478f
KORE B P, KUMAR A, ERASMUS L, et al. Energy transfer mechanisms and optical thermometry of BaMgF4∶Yb3+, Er3+ phosphor [J]. Inorg. Chem., 2018, 57(1): 288-299. doi: 10.1021/acs.inorgchem.7b02436http://dx.doi.org/10.1021/acs.inorgchem.7b02436
LOO J F C, CHIEN Y H, YIN F, et al. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine [J]. Coord. Chem. Rev., 2019, 400: 213042. doi: 10.1016/j.ccr.2019.213042http://dx.doi.org/10.1016/j.ccr.2019.213042
LIAN H Z, HOU Z Y, SHANG M M, et al. Rare earth ions doped phosphors for improving efficiencies of solar cells [J]. Energy, 2013, 57: 270-283. doi: 10.1016/j.energy.2013.05.019http://dx.doi.org/10.1016/j.energy.2013.05.019
钱幸璐. 基于荧光体材料制备白光LED器件研究 [D]. 上海: 上海应用技术大学, 2020.
QIAN X L. Research on White LED Devices Based on Phosphor Materials [D]. Shanghai: Shanghai Institute of Technology, 2020. (in Chinese)
DU P P, MA J, ZHU Q, et al. Phase evolution, structure, and up-/down-conversion luminescence of Li6CaLa2Nb2O12∶Yb3+/RE3+ phosphors (RE=Ho, Er, Tm) [J]. J. Am. Ceram. Soc., 2020, 103(4): 2674-2685. doi: 10.1111/jace.16977http://dx.doi.org/10.1111/jace.16977
ANSARI A A, MUTHUMAREESWARAN M R, LV R C. Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties [J]. Coord. Chem. Rev., 2022, 466: 214584. doi: 10.1016/j.ccr.2022.214584http://dx.doi.org/10.1016/j.ccr.2022.214584
HU J S, BIAN X M, WANG R N, et al. Giant enhancement in upconversion luminescence of β-Ba2ScAlO5∶Yb3+/Er3+ phosphor by the intermediate band through Ca2+ doping [J]. Chem. Mater., 2022, 34(7): 3089-3098. doi: 10.1021/acs.chemmater.1c04142http://dx.doi.org/10.1021/acs.chemmater.1c04142
LI M J, YANG Z W, REN Y T, et al. Reversible modulated upconversion luminescence of MoO3∶Yb3+,Er3+ thermochromic phosphor for switching devices [J]. Inorg. Chem., 2019, 58(10): 6950-6958. doi: 10.1021/acs.inorgchem.9b00526http://dx.doi.org/10.1021/acs.inorgchem.9b00526
FU Y, WANG X J, LIU S, et al. Multicolor upconversion emission and highly optical temperature sensing based on lanthanide-doped double perovskite Sr2LaNbO6 phosphors [J]. Ceram. Int., 2023, 49(6): 9574-9583. doi: 10.1016/j.ceramint.2022.11.127http://dx.doi.org/10.1016/j.ceramint.2022.11.127
SAMAL S K, PUSHPENDRA, YADAV J, et al. Upconversion properties of Er, Yb co-doped KBi(MoO4)2 nanomaterials for optical thermometry [J]. Ceram. Int., 2023, 49(12): 20051-20060. doi: 10.1016/j.ceramint.2023.03.127http://dx.doi.org/10.1016/j.ceramint.2023.03.127
GUPTA I, SINGH S, BHAGWAN S, et al. Rare earth (RE) doped phosphors and their emerging applications: A review [J]. Ceram. Int., 2021, 47(14): 19282-19303. doi: 10.1016/j.ceramint.2021.03.308http://dx.doi.org/10.1016/j.ceramint.2021.03.308
YANG X N, LI X, LI Y C, et al. Effect of energy transfer and local crystal field perturbation on the thermometric sensitivity of Ga-Tb-Eu ternary emission system [J]. Ceram. Int., 2022, 48(1): 684-693. doi: 10.1016/j.ceramint.2021.09.148http://dx.doi.org/10.1016/j.ceramint.2021.09.148
GAO H B, MOLOKEEV M S, CHEN Q, et al. Effect of ligand environment of rare-earth ions on temperature measurement performance of SrAO4∶xEu3+ (A = Mo and W) phosphors [J]. Ceram. Int., 2022, 48(24): 36835-36844. doi: 10.1016/j.ceramint.2022.08.247http://dx.doi.org/10.1016/j.ceramint.2022.08.247
HUA Y B, YU J S. Strong green emission of erbium(Ⅲ)-activated La2MgTiO6 phosphors for solid-state lighting and optical temperature sensors [J]. ACS Sustainable Chem. Eng., 2021, 9(14): 5105-5115. doi: 10.1021/acssuschemeng.0c09375http://dx.doi.org/10.1021/acssuschemeng.0c09375
LIU W G, WANG X J, ZHU Q, et al. Upconversion luminescence and favorable temperature sensing performance of eulytite-type Sr3Y(PO4)3∶Yb3+/Ln3+ phosphors (Ln=Ho, Er, Tm) [J]. Sci. Technol. Adv. Mater., 2019, 20(1): 949-963. doi: 10.1080/14686996.2019.1659090http://dx.doi.org/10.1080/14686996.2019.1659090
ZHENG T, ZHOU L H, QIU X J, et al. Er3+, Yb3+ co-doped Sr3(PO4)2 phosphors: A ratiometric luminescence thermometer based on stark levels with tunable sensitivity [J]. J. Lumin., 2020, 227: 117517. doi: 10.1016/j.jlumin.2020.117517http://dx.doi.org/10.1016/j.jlumin.2020.117517
ZHANG G Q, MOLOKEEV M S, MA Q C, et al. Structural analysis and optical temperature sensing performance of Eu3+-doped Ba3In(PO4)3 [J]. CrystEngComm, 2020, 22(35): 5809-5817. doi: 10.1039/d0ce00997khttp://dx.doi.org/10.1039/d0ce00997k
LEI Z H, LIU R H, SUN L J, et al. An up-conversion Ba3In(PO4)3∶Er3+/Yb3+ phosphor that enables multi-mode temperature measurements and wide-gamut ‘temperature mapping’ [J]. Dalton Trans., 2023, 52(29): 10155-10164. doi: 10.1039/d3dt01575khttp://dx.doi.org/10.1039/d3dt01575k
ZHANG J, ZHANG Y Q, JIANG X M. Investigations on upconversion luminescence of K3Y(PO4)2∶Yb3+-Er3+/Ho3+/Tm3+ phosphors for optical temperature sensing [J]. J. Alloys Compd., 2018, 748: 438-445. doi: 10.1016/j.jallcom.2018.03.127http://dx.doi.org/10.1016/j.jallcom.2018.03.127
KHAJURIA P, BEDYAL A K, MANHAS M, et al. Spectral, surface and thermometric investigations of upconverting Er3+/Yb3+ co-doped Na3Y(PO4)2 phosphor [J]. J. Alloys Compd., 2021, 877: 160327. doi: 10.1016/j.jallcom.2021.160327http://dx.doi.org/10.1016/j.jallcom.2021.160327
朱浩天. 三种稀土磷酸盐基上转换发光材料的制备及性能研究 [D]. 贵州: 贵州师范大学, 2022.
ZHU H T. Preparation and Properties of Three Rare Earth Phosphate⁃based Up⁃conversion Luminescent Materials [D]. Guizhou: Guizhou Normal University, 2022. (in Chinese)
Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data.⁃User's Manual [M]. Bruker AXS, Karlsruhe, Germany. 2008.
SUN Z S, NING Q X, ZHOU W Y, et al. Structural and spectroscopic investigation of an efficient and broadband NIR phosphor InBO3∶Cr3+ and its application in NIR pc-LEDs [J]. Ceram. Int., 2021, 47(10): 13598-13603. doi: 10.1016/j.ceramint.2021.01.218http://dx.doi.org/10.1016/j.ceramint.2021.01.218
GENG X, XIE Y, CHEN S S, et al. Enhanced local symmetry achieved zero-thermal-quenching luminescence characteristic in the Ca2InSbO6∶Sm3+ phosphors for w-LEDs [J]. Chem. Eng. J., 2021, 410: 128396. doi: 10.1016/j.cej.2020.128396http://dx.doi.org/10.1016/j.cej.2020.128396
WANG Q, WANG S W, PANG R, et al. Two-site occupation in Cr3+-activated BaIn2(P2O7)2 phosphor for broadband near-infrared thermometry and LED applications [J]. Mater. Res. Bull., 2023, 163: 112222. doi: 10.1016/j.materresbull.2023.112222http://dx.doi.org/10.1016/j.materresbull.2023.112222
ZHANG J L, ZHAO W R, ZHANG X L, et al. Ultra-broadband near-infrared emission in the double-perovskite Ca2InTaO6∶Cr3+ phosphor for light-emitting-diode applications [J]. J. Lumin., 2023, 255: 119581. doi: 10.1016/j.jlumin.2022.119581http://dx.doi.org/10.1016/j.jlumin.2022.119581
XU X X, SHAO Q Y, YAO L Q, et al. Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications [J]. Chem. Eng. J., 2020, 383: 123108. doi: 10.1016/j.cej.2019.123108http://dx.doi.org/10.1016/j.cej.2019.123108
DONG X R, CUI X Y, FU Z L, et al. Study on preparation and luminescent properties of Eu3+-doped LaAlO3 and GdAlO3 [J]. Mater. Res. Bull., 2012, 47(2): 212-216. doi: 10.1016/j.materresbull.2011.11.046http://dx.doi.org/10.1016/j.materresbull.2011.11.046
SHI X F, MOLOKEEV M S, WANG X J, et al. Crystal structure of NaLuW2O8·2H2O and down/upconversion luminescence of the derived NaLu(WO4)2∶Yb/Ln phosphors (Ln = Ho, Er, Tm) [J]. Inorg. Chem., 2018, 57(17): 10791-10801. doi: 10.1021/acs.inorgchem.8b01427http://dx.doi.org/10.1021/acs.inorgchem.8b01427
HUA Y B, RAN W G, YU J S. Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications [J]. Chem. Eng. J., 2021, 406: 127154. doi: 10.1016/j.cej.2020.127154http://dx.doi.org/10.1016/j.cej.2020.127154
GAO H B, MOLOKEEV M S, CHEN Q, et al. Novel AMoO4∶Eu3+ (A = Ca and Ba) optical thermometer: Investigation of effect of local ionic coordination environment on optical performance and temperature measurement sensitivity [J]. Ceram. Int., 2023, 49(16): 26803-26810. doi: 10.1016/j.ceramint.2023.05.217http://dx.doi.org/10.1016/j.ceramint.2023.05.217
HUA Y B, YU J S. Broadband near-ultraviolet excited La2Mo2O9∶Eu3+ red-emitting phosphors with high color purity for solid-state lighting [J]. J. Alloys Compd., 2019, 783: 969-976. doi: 10.1016/j.jallcom.2018.12.279http://dx.doi.org/10.1016/j.jallcom.2018.12.279
SAIDI K, DAMMAK M. Upconversion luminescence and optical temperature sensing characteristics of Er3+/Yb3+ codoped Na3Gd(PO4)2 phosphors [J]. J. Solid State Chem., 2021, 300: 122214. doi: 10.1016/j.jssc.2021.122214http://dx.doi.org/10.1016/j.jssc.2021.122214
ZHANG J, HUA Z H. Effect of dopant contents on upconversion luminescence and temperature sensing behavior in Ca3La6Si6O24∶Yb3+-Er3+/Ho3+ phosphors [J]. J. Lumin., 2018, 201: 217-223. doi: 10.1016/j.jlumin.2018.04.063http://dx.doi.org/10.1016/j.jlumin.2018.04.063
PANDEY A, RAI V K. Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+∶Y2O3 phosphor [J]. Dalton Trans., 2013, 42(30): 11005-11011. doi: 10.1039/c3dt50592hhttp://dx.doi.org/10.1039/c3dt50592h
WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors [J]. RSC Adv., 2015, 5(105): 86219-86236. doi: 10.1039/c5ra16986khttp://dx.doi.org/10.1039/c5ra16986k
CHAI X N, LI J, WANG X S, et al. Upconversion luminescence and temperature-sensing properties of Ho3+/Yb3+-codoped ZnWO4 phosphors based on fluorescence intensity ratios [J]. RSC Adv., 2017, 7(64): 40046-40052. doi: 10.1039/c7ra05846bhttp://dx.doi.org/10.1039/c7ra05846b
0
Views
342
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution