Near Infrared Optical Thermometry Along with Photothermal Conversion Ability Realized in BaY2O4∶Nd3+
返回论文页
Synthesis and Properties of Materials|更新时间:2023-11-01
|
Near Infrared Optical Thermometry Along with Photothermal Conversion Ability Realized in BaY2O4∶Nd3+
增强出版
Chinese Journal of LuminescenceVol. 44, Issue 10, Pages: 1779-1785(2023)
作者机构:
重庆邮电大学 理学院, 重庆 400065
作者简介:
基金信息:
National Natural Science Foundation of China(11704054);Natural Science Foundation of Chongqing(CSTB2022NSCQ⁃MSX0366);Undergraduate Innovation and Entrepreneurship Training Plan Program of China(202210617017);Doctoral Through Train Scientific Research Project of Chongqing(sl202100000301);Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100640)
XIANG Guotao,DING Yongxi,ZHANG Yu,et al.Near Infrared Optical Thermometry Along with Photothermal Conversion Ability Realized in BaY2O4∶Nd3+[J].Chinese Journal of Luminescence,2023,44(10):1779-1785.
Photothermal therapy (PTT) is in dire need of an accurate, efficient and high-resolution thermometer working in the deep tissues to assist its treatment process. In this paper, the high temperature solid state method is employed to synthesize the BaY
2
O
4
∶Nd
3+
powder, in which the thermally coupled Stark sublevels of Nd
3+
:
4
F
3/2
are utilized to measure the temperature based on the fluorescence intensity ratio (FIR) technology. The optimal value of its absolute sensitivity, relative sensitivity and temperature resolution is 0.09%·K
-1
, 0.69%·K
-1
and 0.05 K, which are superior to majority of the same type thermometers. Moreover, the penetration depth of the present sample in the biological tissues can be reached to 8 mm, benefiting from the fact that its excitation and emission wavelength are all located in the biological windows. Beyond that, the sample owns photothermal conversion ability under the irradiation of 808 nm wavelength. All the findings show the potential of Nd
LI X S, LOVELL J F, YOON J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer [J]. Nat. Rev. Clin. Oncol., 2020, 17(11): 657-674. doi: 10.1038/s41571-020-0410-2http://dx.doi.org/10.1038/s41571-020-0410-2
GAO G, SUN X B, LIANG G L. Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment [J]. Adv. Funct. Mater., 2021, 31(25): 2100738. doi: 10.1002/adfm.202100738http://dx.doi.org/10.1002/adfm.202100738
WEI W F, ZHANG X Y, ZHANG S, et al. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review [J]. Mater. Sci. Eng. C, 2019, 104: 109891. doi: 10.1016/j.msec.2019.109891http://dx.doi.org/10.1016/j.msec.2019.109891
LIU H J, WANG M M, HU X X, et al. Enhanced photothermal therapy through the in situ activation of a temperature and redox dual-sensitive nanoreservoir of triptolide [J]. Small, 2020, 16(38): 2003398. doi: 10.1002/smll.202003398http://dx.doi.org/10.1002/smll.202003398
WANG Y F, DU W, ZHANG T, et al. A self-evaluating photothermal therapeutic nanoparticle [J]. ACS Nano, 2020, 14(8): 9585-9593. doi: 10.1021/acsnano.9b10144http://dx.doi.org/10.1021/acsnano.9b10144
CAO J K, CHEN W P, XU D K, et al. Wide-range thermometry based on green up-conversion of Yb3+/Er3+ co-doped KLu2F7 transparent bulk oxyfluoride glass ceramics [J]. J. Lumin., 2018, 194: 219-224. doi: 10.1016/j.jlumin.2017.10.020http://dx.doi.org/10.1016/j.jlumin.2017.10.020
RUIZ D, DEL ROSAL B, ACEBRÓN M, et al. Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry [J]. Adv. Funct. Mater., 2017, 27(6): 1604629. doi: 10.1002/adfm.201604629http://dx.doi.org/10.1002/adfm.201604629
LIU S F, CUI J, JIA J J, et al. High sensitive Ln3+/Tm3+/Yb3+ (Ln3+= Ho3+, Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels [J]. Ceram. Int., 2019, 45(1): 1-10. doi: 10.1016/j.ceramint.2018.09.162http://dx.doi.org/10.1016/j.ceramint.2018.09.162
XIANG G T, LIU X T, XIA Q, et al. Deep-tissue temperature sensing realized in BaY2O4∶Yb3+/Er3+ with ultrahigh sensitivity and extremely intense red upconversion luminescence [J]. Inorg. Chem., 2020, 59(15): 11054-11060. doi: 10.1021/acs.inorgchem.0c01543http://dx.doi.org/10.1021/acs.inorgchem.0c01543
JI Y, XU W, DING N, et al. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection [J]. Light Sci. Appl., 2020, 9(1): 184. doi: 10.1038/s41377-020-00418-0http://dx.doi.org/10.1038/s41377-020-00418-0
SHOU K Q, QU C R, SUN Y, et al. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe [J]. Adv. Funct. Mater., 2017, 27(23): 1700995. doi: 10.1002/adfm.201700995http://dx.doi.org/10.1002/adfm.201700995
ZHAN Q Q, QIAN J, LIANG H J, et al. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation [J]. ACS Nano, 2011, 5(5): 3744-3757. doi: 10.1021/nn200110jhttp://dx.doi.org/10.1021/nn200110j
XIANG G T, YANG M L, LIU Z, et al. Near-infrared-to-near-infrared optical thermometer BaY2O4∶Yb3+/Nd3+ assembled with photothermal conversion performance [J]. Inorg. Chem., 2022, 61(13): 5425-5432. doi: 10.1021/acs.inorgchem.2c00432http://dx.doi.org/10.1021/acs.inorgchem.2c00432
XIANG G T, YANG M L, XIA Q, et al. Ultrasensitive optical thermometer based on abnormal thermal quenching Stark transitions operating beyond 1 500 nm [J]. J. Am. Ceram. Soc., 2021, 104(11): 5784-5793. doi: 10.1111/jace.17981http://dx.doi.org/10.1111/jace.17981
WAWRZYNCZYK D, BEDNARKIEWICZ A, NYK M, et al. Neodymium (III) doped fluoride nanoparticles as non-contact optical temperature sensors [J]. Nanoscale, 2012, 4(22): 6959-6961. doi: 10.1039/c2nr32203jhttp://dx.doi.org/10.1039/c2nr32203j
KOLESNIKOV I E, KALINICHEV A A, KUROCHKIN M A, et al. YVO4∶Nd3+ nanophosphors as NIR-to-NIR thermal sensors in wide temperature range [J]. Sci. Rep., 2017, 7(1): 18002. doi: 10.1038/s41598-017-18295-whttp://dx.doi.org/10.1038/s41598-017-18295-w
QUINTANILLA M, ZHANG Y, LIZ-MARZÁN L M. Subtissue plasmonic heating monitored with CaF2∶Nd3+,Y3+ nanothermometers in the second biological window [J]. Chem. Mater., 2018, 30(8): 2819-2828. doi: 10.1021/acs.chemmater.8b00806http://dx.doi.org/10.1021/acs.chemmater.8b00806
ROCHA U, SILVA C JDA, SILVA W F, et al. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles [J]. ACS Nano, 2013, 7(2): 1188-1199. doi: 10.1021/nn304373qhttp://dx.doi.org/10.1021/nn304373q