浏览全部资源
扫码关注微信
1.燕山大学 信息科学与工程学院, 河北省特种光纤与光纤传感实验室, 河北 秦皇岛 066004
2.燕山大学理学院 河北省微结构材料物理重点实验室, 河北 秦皇岛 066004
3.秦皇岛本征晶体科技有限公司, 河北 秦皇岛 066000
4.燕山大学 环境与化学工程学院, 河北 秦皇岛 066004
Published:05 October 2023,
Received:25 July 2023,
Revised:10 August 2023,
扫 描 看 全 文
田东升,张斌,尹祖荣等.锌铊共掺碘化钠晶体的生长及闪烁性能[J].发光学报,2023,44(10):1797-1802.
TIAN Dongsheng,ZHANG Bin,YIN Zurong,et al.Growth and Scintillation Properties of Zinc and Thallium-codoped Sodium Iodide Crystals[J].Chinese Journal of Luminescence,2023,44(10):1797-1802.
田东升,张斌,尹祖荣等.锌铊共掺碘化钠晶体的生长及闪烁性能[J].发光学报,2023,44(10):1797-1802. DOI: 10.37188/CJL.20230171.
TIAN Dongsheng,ZHANG Bin,YIN Zurong,et al.Growth and Scintillation Properties of Zinc and Thallium-codoped Sodium Iodide Crystals[J].Chinese Journal of Luminescence,2023,44(10):1797-1802. DOI: 10.37188/CJL.20230171.
采用坩埚下降法生长了NaI∶Zn(0,0.05%,0.08%,0.4%),Tl(0.18%)晶体。对晶体样品进行了X射线粉末衍射、电感耦合等离子体发射光谱以及紫外可见近红外透射光谱测试。结果表明,生长的晶体具有单一的物相,Zn和Tl离子掺杂并没有改变NaI的晶体结构;随着Zn掺杂浓度的增加,晶体内的Zn
2+
离子浓度增加、Tl
+
离子浓度下降;晶体透过率随Zn掺杂浓度的增加呈现先增大后减小的趋势,Zn掺杂浓度为0.08%时,样品的透过率最高,且所有样品在350~700 nm波段的透过率均高于70%。经过切割、打磨、抛光、封装等工序将NaI∶Zn,Tl晶体封装成辐射探测元件。闪烁性能测试结果表明,在
137
Cs放射源激发下,Zn掺量为0.05%、0.08%时的NaI∶Zn,Tl晶体的能量分辨率≤6.80%,光输出相对于NaI∶Tl晶体增加6%~10%,这有利于NaI晶体在高能粒子探测领域的进一步应用。
NaI∶Zn(0, 0.05%, 0.08%, 0.4%),Tl(0.18%) crystals were grown using Bridgman method respectively. The crystal samples were tested by X-ray powder diffraction, inductively coupled plasma emission spectra, and ultraviolet-visible near-infrared transmission spectra. The results show that the grown crystals have a single phase, and the crystal structure of NaI does not change with Zn and Tl ions doping. As the doping concentration of Zn increases, the concentration of Zn
2+
ions in the crystal increases, while the concentration of Tl
+
ions decreases. The transmittance shows a trend of firstly increasing and then decreasing with the increase of Zn doping concentration. When the doping concentration of Zn is 0.08%, the transmittance of the sample is the highest. The transmittance of all the NaI∶Zn,Tl crystals is higher than 70% in the 350-700 nm wavelength range. After cutting, polishing, and packaging processes, NaI∶Zn,Tl crystals were enveloped into radiation detection components. The scintillation performance test results showed that under the excitation of a
137
Cs radiation source, the energy resolution of NaI∶Zn,Tl crystals with Zn doping of 0.05% and 0.08% were less than 6.80%, and the light output increased 6%-10% compared with that of NaI∶Tl crystal. This is conducive to the further application of NaI crystals in the field of high-energy particle detection.
碘化钠晶体Zn掺杂坩埚下降法晶体生长透过率能量分辨率相对光输出
sodium iodide crystalZn2+ dopedBridgman methodcrystal growthtransmittanceenergy resolutionrelative light output
杨洁男, 闻学敏, 魏钦华, 等. 红光-近红外发光卤化物闪烁晶体研究现状 [J]. 发光学报, 2021, 42(11): 1661-1672. doi: 10.37188/cjl.20210270http://dx.doi.org/10.37188/cjl.20210270
YANG J N, WEN X M, WEI Q H, et al. Current status of red and near-infrared emission halide scintillation crystals [J]. Chin. J. Lumin., 2021, 42(11): 1661-1672. (in Chinese). doi: 10.37188/cjl.20210270http://dx.doi.org/10.37188/cjl.20210270
DE HAAS J T M, DORENBOS P. Advances in yield calibration of scintillators [J]. IEEE Trans. Nucl. Sci., 2008, 55(3): 1086-1092. doi: 10.1109/tns.2008.922819http://dx.doi.org/10.1109/tns.2008.922819
GRABMAIER B C. Crystal scintillators [J]. IEEE Trans. Nucl. Sci., 1984, 31(1): 372-376. doi: 10.1109/tns.1984.4333280http://dx.doi.org/10.1109/tns.1984.4333280
HOLL I, LORENZ E, MAGERAS G. A measurement of the light yield of common inorganic scintillators [J]. IEEE Trans. Nucl. Sci., 1988, 35(1): 105-109. doi: 10.1109/23.12684http://dx.doi.org/10.1109/23.12684
SAKAI E. Recent measurements on scintillator-photodetector systems [J]. IEEE Trans. Nucl. Sci., 1987, 34(1): 418-422. doi: 10.1109/tns.1987.4337375http://dx.doi.org/10.1109/tns.1987.4337375
KIM J, PARK K, HWANG J, et al. Efficient design of a ϕ2×2 inch NaI(Tl) scintillation detector coupled with a SiPM in an aquatic environment [J]. Nucl. Eng. Technol., 2019, 51(4): 1091-1097. doi: 10.1016/j.net.2019.01.017http://dx.doi.org/10.1016/j.net.2019.01.017
AUSTIN R A, HOOTEN D. Comparison of neutron capture spectra taken by a constellation Xe-110 detector and a 1″×1″ NaI(Tl) crystal [J]. J. Radioanal. Nucl. Chem., 2009, 279(2): 395-404. doi: 10.1007/s10967-007-7325-1http://dx.doi.org/10.1007/s10967-007-7325-1
KIM K W, ADHIKARI G, ADHIKARI P, et al. Pulse shape discrimination of nuclear recoil and electron recoil events with a NaI(Tl) crystal for dark matter search [J]. IEEE Trans. Nucl. Sci., 2016, 63(2): 534-538. doi: 10.1109/tns.2016.2525765http://dx.doi.org/10.1109/tns.2016.2525765
KHOSHAKHLAGH M, ISLAMIAN J P, ABEDI S M, et al. Development of scintillators in nuclear medicine [J]. World J. Nucl. Med., 2015, 14(3): 156-159. doi: 10.4103/1450-1147.163241http://dx.doi.org/10.4103/1450-1147.163241
任国浩, 杨帆. 卤化物闪烁晶体的研究历史和现状 [J]. 中国科学: 技术科学, 2017, 47(11): 1149-1164. doi: 10.1360/n092017-00108http://dx.doi.org/10.1360/n092017-00108
REN G H, YANG F. The research history and present situation of some halide scintillation crystals [J]. Sci. Sinica Technol., 2017, 47(11): 1149-1164. (in Chinese). doi: 10.1360/n092017-00108http://dx.doi.org/10.1360/n092017-00108
GRIDIN S, WILLIAMS R T, BELSKY A, et al. Carrier trap parameters in NaI with Tl, In, and Eu dopants [J]. J. Phys. Chem. C, 2019, 123(22): 13519-13530. doi: 10.1021/acs.jpcc.9b03429http://dx.doi.org/10.1021/acs.jpcc.9b03429
SHIRAN N, GEKTIN A, BOYARINTSEVA Y, et al. Modification of NaI crystal scintillation properties by Eu-doping [J]. Opt. Mater., 2010, 32(10): 1345-1348. doi: 10.1016/j.optmat.2010.04.014http://dx.doi.org/10.1016/j.optmat.2010.04.014
DORENBOS P. Light output and energy resolution of Ce3+-doped scintillators [J]. Nucl. Instrum. Methods Phys. Res. A, 2002, 486(1-2): 208-213. doi: 10.1016/s0168-9002(02)00704-0http://dx.doi.org/10.1016/s0168-9002(02)00704-0
HANSON H G. Quenching of NaI fluorescence by H2, HCl, CO2, and H2O [J]. J. Chem. Phys., 1955, 23(8): 1391-1397. doi: 10.1063/1.1742315http://dx.doi.org/10.1063/1.1742315
SABHARWAL S C, KATHURIA S P, GHOSH B. Effect of impurities on scintillation-optical and thermoluminescent properties of NaI(Tl) [J]. Nucl. Instrum. Methods Phys. Res. A, 1987, 255(3): 501-506. doi: 10.1016/0168-9002(87)91218-6http://dx.doi.org/10.1016/0168-9002(87)91218-6
YANG K, MENGE P R. Improving γ-ray energy resolution, non-proportionality, and decay time of NaI∶Tl+ with Sr2+ and Ca2+ co-doping [J]. J. Appl. Phys., 2015, 118(21): 213106. doi: 10.1063/1.4937126http://dx.doi.org/10.1063/1.4937126
KHODYUK I V, MESSINA S A, HAYDEN T J, et al. Optimization of scintillation performance via a combinatorial multi-element co-doping strategy: application to NaI∶Tl [J]. J. Appl. Phys., 2015, 118(8): 084901. doi: 10.1063/1.4928771http://dx.doi.org/10.1063/1.4928771
DER MATEOSIAN E, MCKEOWN M, MUEHLHAUSE C O. Response of sodium iodide crystals to alpha particles and electrons as a function of temperature [J]. Phys. Rev., 1956, 101(3): 967-971. doi: 10.1103/physrev.101.967http://dx.doi.org/10.1103/physrev.101.967
STONEHAM A M, ITOH N. Materials modification by electronic excitation [J]. Appl. Surf. Sci., 2000, 168(1-4): 186-193. doi: 10.1016/s0169-4332(00)00587-0http://dx.doi.org/10.1016/s0169-4332(00)00587-0
吴成国, 裴克梅, 何苏红, 等. Mn2+/Eu3+共掺杂Zn2GeO4长余辉基质材料发光机理的研究 [J]. 四川大学学报(自然科学版), 2021, 58(6): 064006.
WU C G, PEI K M, HE S H, et al. Luminescence mechanism studies on Mn2+/Eu3+ co-doped Zn2GeO4 long afterglow system [J]. J. Sichuan Univ. (Nat. Sci. Ed.), 2021, 58(6): 064006. (in Chinese)
BLACKlOCKS A N, CHADWICK A V, JACKSON R A, et al. Investigation into thallium sites and defects in doped scintillation crystals [J]. Phys. Status Solidi C, 2007, 4(3): 1008-1011. doi: 10.1002/pssc.200673704http://dx.doi.org/10.1002/pssc.200673704
郑睿. PET用大尺寸硅酸钇镥闪烁晶体可控生长和均一性优化 [D]. 武汉: 华中科技大学, 2021.
ZHENG R. Controllable Growth and Uniformity Optimization of Large Size LYSO∶Ce Scintillation Crystal for PET Application [D]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese)
SU T M R, RILEY S J. Alkali halide photofragment spectra. I. Alkali iodide bond energies and excited state symmetries at 266 nm [J]. J. Chem. Phys., 1979, 71(8): 3194-3202. doi: 10.1063/1.438766http://dx.doi.org/10.1063/1.438766
ADHIKARI R, LI Q, WILLIAMS R T, et al. DX-like centers in NaI∶Tl upon aliovalent codoping [J]. J. Appl. Phys., 2014, 116(22): 223703. doi: 10.1063/1.4903766http://dx.doi.org/10.1063/1.4903766
0
Views
172
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution