We present the results of a high-speed direct modulation 850 nm oxide confined vertical cavity surface emitting laser(VCSEL),optimize the design of strain InGaAs/AlGaAs quantum wells to achieve high differential gain, and adjust the photon lifetime through surface etching to achieve response flattening. The developed VCSEL with an oxide aperture of about 7 µm has a flat frequency response, a 3 dB modulation bandwidth of 24 GHz, and a relative noise intensity value of -155 dB/Hz. Without any pre-emphasis and equalization technology, the PAM4 modulation data transmission rate can reach 80 Gb/s.
KUCHTA D M. High capacity VCSEL-based links [C]. Proceedings of 2017 Optical Fiber Communications Conference and Exhibition, Los Angeles, 2017. doi: 10.1364/ofc.2017.tu3c.4http://dx.doi.org/10.1364/ofc.2017.tu3c.4
FENG M, WU C H, HOLONYAK N. Oxide-confined VCSELs for high-speed optical interconnects [J]. IEEE J. Quant. Electron., 2018, 54(3): 2400115. doi: 10.1109/jqe.2018.2817068http://dx.doi.org/10.1109/jqe.2018.2817068
TATUM J A, LANDRY G D, GAZULA D, et al. VCSEL-based optical transceivers for future data center applications [C]. Proceedings of 2018 Optical Fiber Communications Conference and Exposition, San Diego, 2018. doi: 10.1364/ofc.2018.m3f.6http://dx.doi.org/10.1364/ofc.2018.m3f.6
ADAMS D. Mega data center optics report [R]. Lorton:LightCounting, 2021.
WANG J Y, MURTY M V R, FENG Z W, et al. 100 Gb/s PAM4 oxide VCSEL development progress at Broadcom [C]. Proceedings of SPIE 11300, Vertical⁃Cavity Surface⁃Emitting Lasers ⅩⅩⅣ, San Francisco, 2020. doi: 10.1117/12.2543802http://dx.doi.org/10.1117/12.2543802
GIOVANE L M, WANG J Y, MURTY M V R, et al. Volume manufacturable high speed 850 nm VCSEL for 100 G ethernet and beyond [C]. Proceedings of 2016 Optical Fiber Communications Conference and Exhibition, Anaheim, 2016. doi: 10.1364/ofc.2016.tu3d.5http://dx.doi.org/10.1364/ofc.2016.tu3d.5
WANG J Y, RAMANA MURTY M V, WANG C, et al. 50 Gb/s PAM-4 oxide VCSEL development progress at broadcom [C]. Proceedings of SPIE 10122, Vertical⁃Cavity Surface⁃Emitting Lasers ⅩⅪ, San Francisco, 2017. doi: 10.1117/12.2250211http://dx.doi.org/10.1117/12.2250211
RAMANA MURTY M V, WANG J Y, CHENG A N, et al. VCSEL noise characterization for data rates beyond 25 Gb/s [C]. Proceedings of SPIE 10552, Vertical⁃Cavity Surface⁃Emitting Lasers ⅩⅩⅡ, San Francisco, 2018: 1055205. doi: 10.1117/12.2290955http://dx.doi.org/10.1117/12.2290955
GIOVANE L M, WANG J Y, RAMANA MURTY M V, et al. Development of next generation data communication VCSELs [C]. Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition, San Diego, 2020. doi: 10.1364/ofc.2020.m3d.5http://dx.doi.org/10.1364/ofc.2020.m3d.5
RAMANA MURTY M V, WANG J Y, HARREN A L, et al. Development and characterization of 100 Gb/s data communication VCSELs [J]. IEEE Photonics Technol. Lett., 2021, 33(16): 812-815. doi: 10.1109/lpt.2021.3069146http://dx.doi.org/10.1109/lpt.2021.3069146
WANG J Y, RAMANA MURTY M V, FENG Z W, et al. High speed 850 nm oxide VCSEL development for 100 Gb/s ethernet at Broadcom [C]. Proceedings of SPIE 12020, Vertical-Cavity Surface-Emitting Lasers ⅩⅩⅥ, San Francisco, 2022. doi: 10.1117/12.2607305http://dx.doi.org/10.1117/12.2607305
HOSER M, KAISER W, QUANDT D, et al. Highly reliable 106 Gb/s PAM-4 850 nm multi-mode VCSEL for 800 G ethernet applications [C]. Proceedings of 2022 Optical Fiber Communications Conference and Exhibition, San Diego, 2022. doi: 10.1364/ofc.2022.tu2d.5http://dx.doi.org/10.1364/ofc.2022.tu2d.5
AOKI T, HIIRO H, TANAKA R, et al. Performance of PAM-4 VCSEL for short-reach 100 Gb/s per lane applications up to 85 ℃ [C]. Proceedings of SPIE 12020, Vertical-cavity Surface-emitting Lasers ⅩⅩⅥ, San Francisco, 2022. doi: 10.1117/12.2607702http://dx.doi.org/10.1117/12.2607702
TIAN S C, TONG C Z, WANG L J, et al. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP [J]. Chin. Opt., 2022, 15(5): 946-953. (in Chinese). doi: 10.37188/co.2022-0136http://dx.doi.org/10.37188/co.2022-0136
XU H Y, TIAN S C, HAN S Y, et al. 53 Gbit/s high speed single mode 940 nm vertical-cavity surface-emitting laser [J]. Chin. J. Lumin., 2022, 43(7): 1114-1120. (in Chinese). doi: 10.37188/CJL.20220106http://dx.doi.org/10.37188/CJL.20220106
WANG Y J, TONG H X, TONG C Z, et al. High-speed 1 030 nm anti-waveguide VCSELs with 25 GHz modulation bandwidth [J]. IEEE Photonics J., 2023, 15(2): 1501005. doi: 10.1109/jphot.2023.3260924http://dx.doi.org/10.1109/jphot.2023.3260924
HAGLUND E, HAGLUND Å, GUSTAVSSON J S, et al. Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter [C]. Proceedings of SPIE 8276, Vertical-Cavity Surface-Emitting Lasers ⅩⅥ, San Francisco, 2012: 82760L. doi: 10.1117/12.908424http://dx.doi.org/10.1117/12.908424