浏览全部资源
扫码关注微信
大连海事大学 理学院, 辽宁 大连 116026
Published:05 October 2023,
Received:14 July 2023,
Revised:24 July 2023,
扫 描 看 全 文
白海斌,陈昕,沙雪竹等.NaGd(MoO4)2∶Tb3+荧光粉的温度及浓度依赖发光与荧光动力学温度传感[J].发光学报,2023,44(10):1770-1778.
BAI Haibin,CHEN Xin,SHA Xuezhu,et al.Temperature- and Concentration-dependent Luminescence and Fluorescence Dynamic Temperature Sensing of NaGd(MoO4)2∶Tb3+ Phosphors[J].Chinese Journal of Luminescence,2023,44(10):1770-1778.
白海斌,陈昕,沙雪竹等.NaGd(MoO4)2∶Tb3+荧光粉的温度及浓度依赖发光与荧光动力学温度传感[J].发光学报,2023,44(10):1770-1778. DOI: 10.37188/CJL.20230165.
BAI Haibin,CHEN Xin,SHA Xuezhu,et al.Temperature- and Concentration-dependent Luminescence and Fluorescence Dynamic Temperature Sensing of NaGd(MoO4)2∶Tb3+ Phosphors[J].Chinese Journal of Luminescence,2023,44(10):1770-1778. DOI: 10.37188/CJL.20230165.
采用高温固相法制备了不同Tb
3+
掺杂浓度的NaGd(MoO
4
)
2
∶Tb
3+
荧光粉,XRD结果证实所制得样品为纯相。利用荧光光谱测量对该荧光粉的发光浓度猝灭进行了分析,证明荧光浓度猝灭是由Tb
3+
离子间的交换相互作用所导致,并符合浓度猝灭的Ozawa模型。采用Auzel提出的自产生猝灭模型对Tb
3+
的
5
D
4
能级荧光动力学进行了分析,结果表明该模型能够很好地解释荧光寿命对浓度的依赖关系。研究了Tb
3+
的
5
D
4
能级的发光强度和荧光寿命对样品温度的依赖关系,提出了利用荧光寿命进行温度传感的方法,并对温度传感的绝对和相对灵敏度进行了分析。
NaGd(MoO
4
)
2
∶Tb
3+
phosphors with different Tb
3+
concentrations were prepared by a high-temperature solid-state reaction method. The crystal structure analysis by means of X-ray diffraction (XRD) revealed that the samples prepared were pure-phased. Fluorescence spectroscopy measurements were utilized to investigate the phosphor's fluorescence quenching, and the results indicated that the fluorescence concentration quenching resulted from exchange interactions between Tb
3+
ions, and the Ozawa model held for the fluorescence quenching process. The self-generated quenching model proposed by Auzel was used to analyze the
5
D
4
level fluorescence dynamics of Tb
3+
, and it was found that the Auzel model can well explain the concentration dependence of fluorescence lifetime. The dependences of the luminescence intensity and lifetime of the
5
D
4
level of Tb
3+
on the sample temperature were investigated. A method for temperature sensing using the fluorescence lifetime was proposed, and the absolute and relative sensitivities of temperature sensing were analyzed.
高温固相法浓度猝灭荧光衰减热猝灭温度传感
solid-state reactionconcentration quenchingfluorescent decaythermal quenchingtemperature sensing
SHI Y H, ZHANG X Z, WANG X J, et al. Pure green upconversion from a multicolor downshifting perovskite crystal [J]. Adv. Opt. Mater., 2023, 11(10): 2202704. doi: 10.1002/adom.202202704http://dx.doi.org/10.1002/adom.202202704
TIAN S H, SHI Z G, SUN Y S, et al. Multicolor phosphate glasses for potential white LED lighting and X-ray detections [J]. Laser Photonics Rev., 2022, 16(9): 2200020. doi: 10.1002/lpor.202200020http://dx.doi.org/10.1002/lpor.202200020
ZHANG Y H, CHEN B J, ZHANG X Z, et al. Sn2+/Mn2+ co-doped germanate glass with quasi-sunlight spectrum visible-emission and its high-quality w-LED application [J]. Chem. Eng. J., 2023, 467: 143467. doi: 10.1016/j.cej.2023.143467http://dx.doi.org/10.1016/j.cej.2023.143467
LI Y, CHEN C, JIN M, et al. External-field-dependent tunable emissions of Er3+-In3+ co-doped Cs2AgBiCl6 for applications in anti-counterfeiting [J]. Mater. Today Phys., 2022, 27: 100830. doi: 10.1016/j.mtphys.2022.100830http://dx.doi.org/10.1016/j.mtphys.2022.100830
陈宝玖, 陈昕, 王礼, 等. 用于防伪标签的发光材料研究进展(特邀) [J]. 光子学报, 2022, 51(8): 0851504-1-14. doi: 10.3788/gzxb20225108.0851504http://dx.doi.org/10.3788/gzxb20225108.0851504
CHEN B J, CHEN X, WANG L, et al. Progress in luminescent materials for anti-counterfeiting labels (Invited) [J]. Acta Photon. Sinica, 2022, 51(8): 0851504-1-14. (in Chinese). doi: 10.3788/gzxb20225108.0851504http://dx.doi.org/10.3788/gzxb20225108.0851504
WU Y J, ZHAO X Q, ZHANG Z Y, et al. Dual-mode dichromatic SrBi4Ti4O15∶Er3+ emitting phosphor for anti-counterfeiting application [J]. Ceram. Int., 2021, 47(11): 15067-15072. doi: 10.1016/j.ceramint.2021.02.064http://dx.doi.org/10.1016/j.ceramint.2021.02.064
RAO Z H, LI Q Q, LI Z L, et al. Ultra-high-sensitive temperature sensing based on Er3+ and Yb3+ co-doped lead-free double perovskite microcrystals [J]. J. Phys. Chem. Lett., 2022, 13(16): 3623-3630. doi: 10.1021/acs.jpclett.2c00744http://dx.doi.org/10.1021/acs.jpclett.2c00744
YAO W J, TIAN Q Y, LIU J, et al. Preparation and RGB upconversion optic properties of transparent anti-counterfeiting films [J]. Nanoscale, 2017, 9(41): 15982-15989. doi: 10.1039/c7nr05744jhttp://dx.doi.org/10.1039/c7nr05744j
LIU X H, SHAO H, LI N, et al. Electrospun green-emitting La2O2CO3∶Tb3+ nanofibers and La2O2CO3∶Tb3+/Eu3+ nanofibers with white-light emission and color-tuned photoluminescence [J]. J. Colloid Interface Sci., 2023, 646: 711-720. doi: 10.1016/j.jcis.2023.05.116http://dx.doi.org/10.1016/j.jcis.2023.05.116
NI Z, LIU M X, LI B, et al. Room-temperature, ultrafast, and aqueous-phase synthesis of ultrasmall LaPO4∶Ce3+, Tb3+ nanoparticles with a photoluminescence quantum yield of 74% [J]. Inorg. Chem., 2023, 62(11): 4727-4734.
WANG J Q, LI Y H, LI X T, et al. Energy transfer mechanism of carboxymethyl chitosan-Eu3+/Tb3+ complex materials and application in multicolor LED [J]. Carbohydr. Polym., 2023, 315: 120981. doi: 10.1016/j.carbpol.2023.120981http://dx.doi.org/10.1016/j.carbpol.2023.120981
XIE Y, SUN G T, MANDL G A, et al. Upconversion luminescence through cooperative and energy-transfer mechanisms in Yb3+-metal-organic frameworks [J]. Angew. Chem., Int. Ed., 2023, 62(4): e202216269. doi: 10.1002/anie.202216269http://dx.doi.org/10.1002/anie.202216269
REN Y T, YANG Z W, LI M J, et al. Reversible upconversion Luminescence modification based on photochromism in BaMgSiO4∶Yb3+, Tb3+ ceramics for anti-counterfeiting applications [J]. Adv. Opt. Mater., 2019, 7(15): 1900213. doi: 10.1002/adom.201900213http://dx.doi.org/10.1002/adom.201900213
LEE T J, LUO L Y, DIAU E W G, et al. Visible quantum cutting through downconversion in green-emitting K2GdF5∶Tb3+ phosphors [J]. Appl. Phys. Lett., 2006, 89(13): 131121. doi: 10.1063/1.2358193http://dx.doi.org/10.1063/1.2358193
DUAN Q Q, QIN F, WANG D, et al. Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass [J]. J. Appl. Phys., 2011, 110(11): 113503. doi: 10.1063/1.3662916http://dx.doi.org/10.1063/1.3662916
MISHRA N K, SHWETABH K, GAUTAM U K, et al. Probing multimodal light emission from Tb3+/Yb3+-doped garnet nanophosphors for lighting applications [J]. Phys. Chem. Chem. Phys., 2023, 25(16): 11756-11770. doi: 10.1039/d3cp00265ahttp://dx.doi.org/10.1039/d3cp00265a
张艳秋. 稀土掺杂钨酸钆和NaYF4上转换材料的发光性质与应用探索 [D]. 大连: 大连海事大学, 2020.
ZHANG Y Q. Luminescence Properties and Application Study of Rare Earth Doped Gadolinium Tungstate and NaYF4 Upconversion Materials [D]. Dalian: Dalian Maritime University, 2020. (in Chinese)
SHA X Z, CHEN B J, ZHANG X Z, et al. Pre-assessments of optical transition, gain performance and temperature sensing of Er3+ in NaLn(MoO4)2 (Ln = Y, La, Gd and Lu) single crystals by using their powder-formed samples derived from traditional solid state reaction [J]. Opt. Laser Technol., 2021, 140: 107012. doi: 10.1016/j.optlastec.2021.107012http://dx.doi.org/10.1016/j.optlastec.2021.107012
ZHENG H, CHEN B J, YU H Q, et al. Rod-shaped NaY(MoO4)2∶Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density [J]. Sens. Actuators B: Chem., 2016, 234: 286-293. doi: 10.1016/j.snb.2016.04.162http://dx.doi.org/10.1016/j.snb.2016.04.162
JIANG Y Y, LIU Y, LIU G X, et al. Surfactant-assisted hydrothermal synthesis of octahedral structured NaGd(MoO4)2∶Eu3+/Tb3+ and tunable photoluminescent properties [J]. Opt. Mater., 2014, 36(11): 1865-1870. doi: 10.1016/j.optmat.2014.03.043http://dx.doi.org/10.1016/j.optmat.2014.03.043
LIAO C L, CAO R P, WANG W D, et al. Photoluminescence properties and energy transfer of NaY(MoO4)2∶R (R = Sm3+/Bi3+, Tb3+/Bi3+, Sm3+/Tb3+) phosphors [J]. Mater. Res. Bull., 2018, 97: 490-496.
HANUZA J, MACALIK L. Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4), single crystals (Ln = Sm-Lu, Y) [J]. Spectrochim. Acta A⁃Mol. Biomol. Spectrosc., 1987, 43(3): 361-373. doi: 10.1016/0584-8539(87)80118-6http://dx.doi.org/10.1016/0584-8539(87)80118-6
MACALIK L, HANUZA J, KAMINSKII A A. Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals [J]. J. Mol. Struct., 2000, 555(1-3): 289-297. doi: 10.1016/s0022-2860(00)00612-8http://dx.doi.org/10.1016/s0022-2860(00)00612-8
TIAN B N, CHEN B J, TIAN Y, et al. Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21∶Eu3+ phosphors [J]. J. Mater. Chem. C, 2013, 1(12): 2338-2344. doi: 10.1039/c3tc00915ghttp://dx.doi.org/10.1039/c3tc00915g
VAN UITERT L G. Characterization of energy transfer interactions between rare earths ions [J]. J. Electrochem. Soc., 1967, 114(10): 1048-1053. doi: 10.1149/1.2424184http://dx.doi.org/10.1149/1.2424184
OZAWA L. Determination of self-concentration quenching mechanisms of rare earth luminescence from intensity measurements on powdered phosphor screens [J]. J. Electrochem. Soc., 1979, 126(1): 106-109. doi: 10.1149/1.2128962http://dx.doi.org/10.1149/1.2128962
INOKUTI M, HIRAYAMA F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J. Chem. Phys., 1965, 43(6): 1978-1989. doi: 10.1063/1.1697063http://dx.doi.org/10.1063/1.1697063
AUZEL F. A fundamental self-generated quenching center for lanthanide-doped high-purity solids [J]. J. Lumin., 2002, 100(1-4): 125-130. doi: 10.1016/s0022-2313(02)00457-xhttp://dx.doi.org/10.1016/s0022-2313(02)00457-x
TIAN Y, CHEN B J, HUA R N, et al. Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3∶Eu3+ phosphor [J]. J. Appl. Phys., 2011, 109(5): 053511. doi: 10.1063/1.3551584http://dx.doi.org/10.1063/1.3551584
DENG H J, XUE N, HEI Z F, et al. Close-relationship between the luminescence and structural characteristics in efficient nano-phosphor Y2Mo4O15∶Eu3+ [J]. Opt. Mater. Express, 2015, 5(3): 490-496. doi: 10.1364/ome.5.000490http://dx.doi.org/10.1364/ome.5.000490
WEI J M, WEI H, JI S M, et al. Temperature sensing behavior in Yb3+-Tb3+ and Eu3+ doped Ca2Gd8(SiO4)6O2 phosphors based on upconversion and downshifting luminescence [J]. J. Mater. Sci.: Mater. Electron., 2018, 29(14): 12061-12066. doi: 10.1007/s10854-018-9312-9http://dx.doi.org/10.1007/s10854-018-9312-9
XIA W D, LI L, YANG P X, et al. Synthesis of color-tunable Sr8MgLa(PO4)7∶Eu3+/Tb3+ phosphors for designing dual-model thermometers [J]. J. Lumin., 2021, 239: 118383. doi: 10.1016/j.jlumin.2021.118383http://dx.doi.org/10.1016/j.jlumin.2021.118383
LAPAEV D V, NIKIFOROV V G, LOBKOV V S, et al. A photostable vitrified film based on a terbium (Ⅲ) β-diketonate complex as a sensing element for reusable luminescent thermometers [J]. J. Mater. Chem. C, 2018, 6(35): 9475-9481. doi: 10.1039/c8tc01288ahttp://dx.doi.org/10.1039/c8tc01288a
0
Views
128
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution