浏览全部资源
扫码关注微信
1.广西大学 省部共建特色金属材料与组合结构全寿命安全国家重点实验室, 广西 南宁 530004
2.广西大学 资源环境与材料学院, 广西 南宁 530004
Published:05 October 2023,
Received:01 July 2023,
Revised:17 July 2023,
扫 描 看 全 文
包文雪,彭辉,邹炳锁.零维有机⁃无机杂化金属卤化物的溶液合成、光物理性质及光电应用[J].发光学报,2023,44(10):1751-1769.
BAO Wenxue,PENG Hui,ZOU Bingsuo.Solution Synthesis, Photophysical Properties and Photoelectric Application of Zero-dimensional Organic-inorganic Hybrid Metal Halide[J].Chinese Journal of Luminescence,2023,44(10):1751-1769.
包文雪,彭辉,邹炳锁.零维有机⁃无机杂化金属卤化物的溶液合成、光物理性质及光电应用[J].发光学报,2023,44(10):1751-1769. DOI: 10.37188/CJL.20230149.
BAO Wenxue,PENG Hui,ZOU Bingsuo.Solution Synthesis, Photophysical Properties and Photoelectric Application of Zero-dimensional Organic-inorganic Hybrid Metal Halide[J].Chinese Journal of Luminescence,2023,44(10):1751-1769. DOI: 10.37188/CJL.20230149.
零维(0D)有机⁃无机杂化金属卤化物作为一种重要的功能材料,由于其优异的发光特性,在照明、显示和X射线闪烁体等领域得到了广泛的关注。在0D有机⁃无机杂化金属卤化物中,金属卤化物多面体阴离子被有机阳离子包围并完全孤立,形成独特的“主⁃客体”结构。因此,0D有机⁃无机杂化金属卤化物通常表现出单个金属卤化物多面体的固有特性。然而,0D有机⁃无机杂化金属卤化物作为一种新兴的发光材料,除了包含显著的空间限域特征,其还有可调的微观相互作用,因此不同的成分对它们的发光物理机制具有显著的影响。基于此,本文首先介绍了0D有机⁃无机杂化金属卤化物的溶液合成方法、晶体结构特征和发光物理机制;然后详细分析了0D有机⁃无机杂化金属卤化物发光物理机制的调控以及光电方面的应用;最后,对0D有机⁃无机杂化金属卤化物的未来应用和研究进行了总结和展望。
Zero-dimensional (0D) organic-inorganic hybrid metal halides, as an important functional material, have received widespread attention in the fields of lighting, display, and X-ray scintillator for their excellent luminescent properties. In 0D organic-inorganic hybrid metal halides, the polyhedral anions of metal halides are surrounded by organic cations and completely isolated, forming a unique “host-guest” structure. Hence, 0D organic-inorganic hybrid metal halides generally exhibit the intrinsic properties of single metal-halide polyhedrons. However, 0D organic-inorganic hybrid metal halides, as an emerging luminescent material, not only contain significant spatial confinement characteristics, but also have tunable micro interactions. Therefore, different components have a significant impact on their photophysical mechanism. Based on this, this review first introduces the solution synthesis methods, crystal structure characteristics, and photophysical mechanism of 0D organic-inorganic hybrid metal halides, and then analyzes in detail the regulation of the photophysical mechanism and optoelectronic applications of 0D organic-inorganic hybrid metal halides. Finally, we summarize and prospect the future applications and research of 0D organic-inorganic hybrid metal halides.
零维金属卤化物有机-无机杂化高效宽带发光光物理性质光电应用
zero-dimensional metal halidesorganic-inorganic hybridefficient broadband emissionphotophysical propertiesoptoelectronic applications
OTERO-MARTÍNEZ C, YE J Z, SUNG J, et al. Colloidal metal-halide perovskite nanoplatelets: thickness-controlled synthesis, properties, and application in light-emitting diodes [J]. Adv. Mater., 2022, 34(10): 2107105-1-41. doi: 10.1002/adma.202107105http://dx.doi.org/10.1002/adma.202107105
ZHANG F, LU H P, TONG J H, et al. Advances in two-dimensional organic-inorganic hybrid perovskites [J]. Energy Environ. Sci., 2020, 13(4): 1154-1186. doi: 10.1039/c9ee03757hhttp://dx.doi.org/10.1039/c9ee03757h
HUANG H W, PRADHAN B, HOFKENS J, et al. Solar-driven metal halide perovskite photocatalysis: design, stability, and performance [J]. ACS Energy Lett., 2020, 5(4): 1107-1123. doi: 10.1021/acsenergylett.0c00058http://dx.doi.org/10.1021/acsenergylett.0c00058
ZHANG F, ZHONG H Z, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology [J]. ACS Nano, 2015, 9(4): 4533-4542. doi: 10.1021/acsnano.5b01154http://dx.doi.org/10.1021/acsnano.5b01154
LEVCHUK I, OSVET A, TANG X F, et al. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals [J]. Nano Lett., 2017, 17(5): 2765-2770. doi: 10.1021/acs.nanolett.6b04781http://dx.doi.org/10.1021/acs.nanolett.6b04781
DEY A, YE J Z, DE A, et al. State of the art and prospects for halide perovskite nanocrystals [J]. ACS Nano, 2021, 15(7): 10775-10981.
SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties [J]. Chem. Rev., 2019, 119(5): 3296-3348. doi: 10.1021/acs.chemrev.8b00644http://dx.doi.org/10.1021/acs.chemrev.8b00644
LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides [J]. Chem. Soc. Rev., 2021, 50(4): 2626-2662. doi: 10.1039/d0cs00779jhttp://dx.doi.org/10.1039/d0cs00779j
ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids [J]. Mat. Sci. Eng. R Rep., 2019, 137: 38-65. doi: 10.1016/j.mser.2018.12.001http://dx.doi.org/10.1016/j.mser.2018.12.001
PENG H, TIAN Y, WANG X X, et al. Bulk assembly of a 0D organic antimony chloride hybrid with highly efficient orange dual emission by self-trapped states [J]. J. Mater. Chem. C, 2021, 9(36): 12184-12190. doi: 10.1039/d1tc02906ahttp://dx.doi.org/10.1039/d1tc02906a
BHAUMIK S, RAY S, BATABYAL S K. Recent advances of lead-free metal halide perovskite single crystals and nanocrystals: synthesis, crystal structure, optical properties, and their diverse applications [J]. Mater. Today Chem., 2020, 18: 100363-1-34. doi: 10.1016/j.mtchem.2020.100363http://dx.doi.org/10.1016/j.mtchem.2020.100363
WANG Y L, CHANG S, CHEN X M, et al. Rapid growth of halide perovskite single crystals: from methods to optimization control [J]. Chin. J. Chem., 2019, 37(6): 616-629. doi: 10.1002/cjoc.201900071http://dx.doi.org/10.1002/cjoc.201900071
CHEN D, DAI F L, HAO S Q, et al. Crystal structure and luminescence properties of lead-free metal halides (C6H5CH2NH3)3MBr6 (M = Bi and Sb) [J]. J. Mater. Chem. C, 2020, 8(22): 7322-7329. doi: 10.1039/d0tc00562bhttp://dx.doi.org/10.1039/d0tc00562b
TAILOR N K, SATAPATHI S. The impact of Cs3Bi2Cl9 single crystal growth modality on its symmetry and morphology [J]. J. Mater. Res. Technol., 2020, 9(4): 7149-7157. doi: 10.1016/j.jmrt.2020.04.097http://dx.doi.org/10.1016/j.jmrt.2020.04.097
ZHANG H J, XU Y D, SUN Q H, et al. Lead free halide perovskite Cs3Bi2I9 bulk crystals grown by a low temperature solution method [J]. CrystEngComm, 2018, 20(34): 4935-4941. doi: 10.1039/c8ce00925bhttp://dx.doi.org/10.1039/c8ce00925b
PENG H, HE X F, WEI Q L, et al. Realizing high-efficiency yellow emission of organic antimony halides via rational structural design [J]. ACS Appl. Mater. Interfaces, 2022, 14(40): 45611-45620. doi: 10.1021/acsami.2c14169http://dx.doi.org/10.1021/acsami.2c14169
PENG H, XIAO Y H, TIAN Y, et al. Dual self-trapped exciton emission of (TBA)2Cu2I4: optical properties and high anti-water stability [J]. J. Mater. Chem. C, 2021, 9(44): 16014-16021. doi: 10.1039/d1tc04011ahttp://dx.doi.org/10.1039/d1tc04011a
JIANG X M, CHEN Z L, TAO X T. (1-C5H14N2Br)2MnBr4: a lead-free zero-dimensional organic-metal halide with intense green photoluminescence [J]. Front. Chem., 2020, 8: 352-1-8. doi: 10.3389/fchem.2020.00352http://dx.doi.org/10.3389/fchem.2020.00352
LIN H R, ZHOU C K, CHAABAN M, et al. Bulk assembly of zero-dimensional organic lead bromide hybrid with efficient blue emission [J]. ACS Mater. Lett., 2019, 1(6): 594-598. doi: 10.1021/acsmaterialslett.9b00333http://dx.doi.org/10.1021/acsmaterialslett.9b00333
PENG Y C, ZHANG Z Z, LIN Y P, et al. A deep-red-emission antimony(III) chloride with dual-cations: extremely large Stokes shift due to high [SbCl6] distortion [J]. Chem. Commun., 2021, 57(100): 13784-13787. doi: 10.1039/d1cc05648dhttp://dx.doi.org/10.1039/d1cc05648d
YANGUI A, ROCCANOVA R, MCWHORTER T M, et al. Hybrid organic-inorganic halides (C5H7N2)2MBr4 (M = Hg, Zn) with high color rendering index and high-efficiency white-light emission [J]. Chem. Mater., 2019, 31(8): 2983-2991. doi: 10.1021/acs.chemmater.9b00537http://dx.doi.org/10.1021/acs.chemmater.9b00537
ZHOU C K, LIN H R, NEU J, et al. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency [J]. ACS Energy Lett., 2019, 4(7): 1579-1583.
LI M Z, ZHOU J, ZHOU G J, et al. Hybrid metal halides with multiple photoluminescence centers [J]. Angew. Chem. Int. Ed., 2019, 58(51): 18670-18675. doi: 10.1002/anie.201911419http://dx.doi.org/10.1002/anie.201911419
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报, 2021, 42(6): 733-754. doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SU B B, XIA Z G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials [J]. Chin. J. Lumin., 2021, 42(6): 733-754. (in Chinese). doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
LI S R, LUO J J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications [J]. J. Phys. Chem. Lett., 2019, 10(8): 1999-2007. doi: 10.1021/acs.jpclett.8b03604http://dx.doi.org/10.1021/acs.jpclett.8b03604
ZHOU L, LIAO J F, KUANG D B. An overview for zero-dimensional broadband emissive metal-halide single crystals [J]. Adv. Opt. Mater., 2021, 9(17): 2100544-1-28. doi: 10.1002/adom.202100544http://dx.doi.org/10.1002/adom.202100544
YANG L L, HUANG J H, TAN Y K, et al. All-inorganic lead halide perovskite nanocrystals applied in advanced display devices [J]. Mater. Horiz., 2023, 10(6): 1969-1989. doi: 10.1039/d3mh00062ahttp://dx.doi.org/10.1039/d3mh00062a
ZHOU J, LI M Z, NING L X, et al. Broad-band emission in a zero-dimensional hybrid organic [PbBr6] trimer with intrinsic vacancies [J]. J. Phys. Chem. Lett., 2019, 10(6): 1337-1341.
RAN Q D, ZHANG Y, YANG J, et al. White-light defect emission and enhanced photoluminescence efficiency in a 0D indium-based metal halide [J]. J. Mater. Chem. C, 2022, 10(6): 1999-2007. doi: 10.1039/d1tc05140ghttp://dx.doi.org/10.1039/d1tc05140g
SPANOPOULOS I, HADAR I, KE W J, et al. Water-stable 1D hybrid tin(Ⅱ) iodide emits broad light with 36% photoluminescence quantum efficiency [J]. J. Am. Chem. Soc., 2020, 142(19): 9028-9038. doi: 10.1021/jacs.0c03004http://dx.doi.org/10.1021/jacs.0c03004
DOHNER E R, JAFFE A, BRADSHAW L R, et al. Intrinsic white-light emission from layered hybrid perovskites [J]. J. Am. Chem. Soc., 2014, 136(38): 13154-13157. doi: 10.1021/ja507086bhttp://dx.doi.org/10.1021/ja507086b
DOHNER E R, HOKE E T, KARUNADASA H I. Self-assembly of broadband white-light emitters [J]. J. Am. Chem. Soc., 2014, 136(5): 1718-1721. doi: 10.1021/ja411045rhttp://dx.doi.org/10.1021/ja411045r
SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites [J]. Acc. Chem. Res., 2018, 51(3): 619-627. doi: 10.1021/acs.accounts.7b00433http://dx.doi.org/10.1021/acs.accounts.7b00433
GUO Q X, ZHAO X, SONG B X, et al. Light emission of self-trapped excitons in inorganic metal halides for optoelectronic applications [J]. Adv. Mater., 2022, 34(52): 2201008-1-16. doi: 10.1002/adma.202201008http://dx.doi.org/10.1002/adma.202201008
UETA M, KANZAKI H, KOBAYASHI K, et al. Excitonic Processes in Solids [M]. Berlin: Springer, 1986. doi: 10.1007/978-3-642-82602-3http://dx.doi.org/10.1007/978-3-642-82602-3
WANG S S, YAO Y P, KONG J T, et al. Highly efficient white-light emission in a polar two-dimensional hybrid perovskite [J]. Chem. Commun., 2018, 54(32): 4053-4056. doi: 10.1039/c8cc01663ahttp://dx.doi.org/10.1039/c8cc01663a
LI S, XU J, LI Z G, et al. One-dimensional lead-free halide with near-unity greenish-yellow light emission [J]. Chem. Mater., 2020, 32(15): 6525-6531. doi: 10.1021/acs.chemmater.0c01794http://dx.doi.org/10.1021/acs.chemmater.0c01794
LI M Y, LIN J W, LIU K J, et al. Light-emitting 0D hybrid metal halide (C3H12N2)2Sb2Cl10 with antimony dimers [J]. Inorg. Chem., 2021, 60(15): 11429-11434. doi: 10.1021/acs.inorgchem.1c01440http://dx.doi.org/10.1021/acs.inorgchem.1c01440
ZHANG Y X, LIU Y C, XU Z, et al. Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector [J]. J. Mater. Chem. C, 2019, 7(6): 1584-1591. doi: 10.1039/c8tc06129ghttp://dx.doi.org/10.1039/c8tc06129g
PENG H, ZOU B S. Effects of electron-phonon coupling and spin-spin coupling on the photoluminescence of low-dimensional metal halides [J]. J. Phys. Chem. Lett., 2022, 13(7): 1752-1764. doi: 10.1021/acs.jpclett.1c03849http://dx.doi.org/10.1021/acs.jpclett.1c03849
BISWAS A, BAKTHAVATSALAM R, BAHADUR V, et al. Lead-free zero dimensional tellurium(IV) chloride-organic hybrid with strong room temperature emission as a luminescent material [J]. J. Mater. Chem. C, 2021, 9(12): 4351-4358. doi: 10.1039/d0tc05752ehttp://dx.doi.org/10.1039/d0tc05752e
YANG B, HAN K L. Ultrafast dynamics of self-trapped excitons in lead-free perovskite nanocrystals [J]. J. Phys. Chem. Lett., 2021, 12(34): 8256-8262. doi: 10.1021/acs.jpclett.1c01828http://dx.doi.org/10.1021/acs.jpclett.1c01828
TAO P, LIU S J, WONG W Y. Phosphorescent manganese(Ⅱ) complexes and their emerging applications [J]. Adv. Opt. Mater., 2020, 8(20): 2000985-1-21. doi: 10.1002/adom.202000985http://dx.doi.org/10.1002/adom.202000985
QIN Y Y, SHE P F, HUANG X M, et al. Luminescent manganese(Ⅱ) complexes: synthesis, properties and optoelectronic applications [J]. Coord. Chem. Rev., 2020, 416: 213331-1-19. doi: 10.1016/j.ccr.2020.213331http://dx.doi.org/10.1016/j.ccr.2020.213331
PENG H, ZOU B S, GUO Y C, et al. Evolution of the structure and properties of mechanochemically synthesized pyrrolidine incorporated manganese bromide powders [J]. J. Mater. Chem. C, 2020, 8(19): 6488-6495. doi: 10.1039/d0tc00460jhttp://dx.doi.org/10.1039/d0tc00460j
WANG A F, GUO Y Y, ZHOU Z B, et al. Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency [J]. Chem. Sci., 2019, 10(17): 4573-4579. doi: 10.1039/c9sc00453jhttp://dx.doi.org/10.1039/c9sc00453j
SUN C, LU H, YUE C Y, et al. Multiple light source-excited organic manganese halides for water-jet rewritable luminescent paper and anti-counterfeiting [J]. ACS Appl. Mater. Interfaces, 2022, 14(50): 56176-56184. doi: 10.1021/acsami.2c18363http://dx.doi.org/10.1021/acsami.2c18363
GAO H Z, LU Z Y, ZHAO X X, et al. Singlet exciton and singlet/triplet self-trapped excitons for ultra-broadband white-light emission in a zero-dimensional cadmium bromide hybrid [J]. J. Mater. Chem. C, 2023, 11(26): 9023-9029. doi: 10.1039/d3tc01436chttp://dx.doi.org/10.1039/d3tc01436c
PENG H, YAO S F, GUO Y C, et al. Highly efficient self-trapped exciton emission of a (MA)4Cu2Br6 single crystal [J]. J. Phys. Chem. Lett., 2020, 11(12): 4703-4710. doi: 10.1021/acs.jpclett.0c01162http://dx.doi.org/10.1021/acs.jpclett.0c01162
PENG H, TIAN Y, WANG X X, et al. Pure white emission with 91.9% photoluminescence quantum yield of [(C3H7)4N]2Cu2I4 out of polaronic states and ultra-high color rendering index [J]. ACS Appl. Mater. Interfaces, 2022, 14(10): 12395-12403. doi: 10.1021/acsami.2c00006http://dx.doi.org/10.1021/acsami.2c00006
PENG H, TIAN Y, YU Z M, et al. (C16H28N)2SbCl5: A new lead-free zero-dimensional metal-halide hybrid with bright orange emission [J]. Sci. China Mater., 2022, 65(6): 1594-1600. doi: 10.1007/s40843-021-1937-yhttp://dx.doi.org/10.1007/s40843-021-1937-y
HE Q Q, ZHOU C K, XU L J, et al. Highly stable organic antimony halide crystals for X-ray scintillation [J]. ACS Mater. Lett., 2020, 2(6): 633-638. doi: 10.1021/acsmaterialslett.0c00133http://dx.doi.org/10.1021/acsmaterialslett.0c00133
SUN C, ZANG J P, LIU Y Q, et al. Lead-free hybrid indium perovskites with highly efficient and stable green light emissions [J]. CCS Chem., 2022, 4(9): 3106-3121. doi: 10.31635/ccschem.021.202101092http://dx.doi.org/10.31635/ccschem.021.202101092
JIN J C, LIN Y P, WU Y H, et al. Long lifetime phosphorescence and X-ray scintillation of chlorobismuthate hybrids incorporating ionic liquid cations [J]. J. Mater. Chem. C, 2021, 9(5): 1814-1821. doi: 10.1039/d0tc05736chttp://dx.doi.org/10.1039/d0tc05736c
HAN K, JIN J C, SU B B, et al. Molecular dimensionality and photoluminescence of hybrid metal halides [J]. Trends Chem., 2022, 4(11): 1034-1044. doi: 10.1016/j.trechm.2022.08.007http://dx.doi.org/10.1016/j.trechm.2022.08.007
XU L J, PLAVIAK A, LIN X S, et al. Metal halide regulated photophysical tuning of zero-dimensional organic metal halide hybrids: from efficient phosphorescence to ultralong afterglow [J]. Angew. Chem. Int. Ed., 2020, 59(51): 23067-23071. doi: 10.1002/anie.202010555http://dx.doi.org/10.1002/anie.202010555
ZHOU C K, TIAN Y, WANG M C, et al. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation [J]. Angew. Chem. Int. Ed., 2017, 56(31): 9018-9022. doi: 10.1002/anie.201702825http://dx.doi.org/10.1002/anie.201702825
ZHOU L, LIAO J F, HUANG Z G, et al. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal [J]. Angew. Chem. Int. Ed., 2019, 58(43): 15435-15440. doi: 10.1002/anie.201907503http://dx.doi.org/10.1002/anie.201907503
GAUTIER R, PARIS M, MASSUYEAU F. Hydrogen bonding and broad-band emission in hybrid zinc halide phosphors [J]. Inorg. Chem., 2020, 59(5): 2626-2630. doi: 10.1021/acs.inorgchem.9b02964http://dx.doi.org/10.1021/acs.inorgchem.9b02964
LIU H L, RU H Y, SUN M E, et al. Organic-inorganic manganese bromide hybrids with water-triggered luminescence for rewritable paper [J]. Adv. Opt. Mater., 2022, 10(4): 2101700-1-7. doi: 10.1002/adom.202101700http://dx.doi.org/10.1002/adom.202101700
LI M Z, LI Y W, MOLOKEEV M S, et al. Halogen substitution in zero-dimensional mixed metal halides toward photoluminescence modulation and enhanced quantum yield [J]. Adv. Opt. Mater., 2020, 8(16): 2000418-1-9. doi: 10.1002/adom.202000418http://dx.doi.org/10.1002/adom.202000418
ZHOU C K, LIN H R, TIAN Y, et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency [J]. Chem. Sci., 2018, 9(3): 586-593. doi: 10.1039/c7sc04539ehttp://dx.doi.org/10.1039/c7sc04539e
ZHOU G J, LIU Z Y, MOLOKEEV M S, et al. Manipulation of Cl/Br transmutation in zero-dimensional Mn2+-based metal halides toward tunable photoluminescence and thermal quenching behaviors [J]. J. Mater. Chem. C, 2021, 9(6): 2047-2053. doi: 10.1039/d0tc05137chttp://dx.doi.org/10.1039/d0tc05137c
ZHOU G J, JIA X F, GUO S Q, et al. Role of halogen atoms on high-efficiency Mn2+ emission in two-dimensional hybrid perovskites [J]. J. Phys. Chem. Lett., 2019, 10(16): 4706-4712. doi: 10.1021/acs.jpclett.9b01996http://dx.doi.org/10.1021/acs.jpclett.9b01996
LI Z Y, LI Y, LIANG P, et al. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency [J]. Chem. Mater., 2019, 31(22): 9363-9371. doi: 10.1021/acs.chemmater.9b02935http://dx.doi.org/10.1021/acs.chemmater.9b02935
SONG G M, LI M Z, YANG Y, et al. Lead-free tin(IV)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission [J]. J. Phys. Chem. Lett., 2020, 11(5): 1808-1813. doi: 10.1021/acs.jpclett.0c00096http://dx.doi.org/10.1021/acs.jpclett.0c00096
SONG G M, LI Z Y, GONG P F, et al. Tunable white light emission in a zero-dimensional organic-inorganic metal halide hybrid with ultra-high color rendering index [J]. Adv. Opt. Mater., 2021, 9(11): 2002246-1-7. doi: 10.1002/adom.202002246http://dx.doi.org/10.1002/adom.202002246
WU Y X, WANG C F, LI H H, et al. Highly efficient and uncommon photoluminescence behavior combined with multiple dielectric response in manganese(II) based hybrid phase transition compounds [J]. Eur. J. Inorg. Chem., 2020, 2020(4): 394-399. doi: 10.1002/ejic.201901263http://dx.doi.org/10.1002/ejic.201901263
MAO L L, GUO P J, WANG S X, et al. Design principles for enhancing photoluminescence quantum yield in hybrid manganese bromides [J]. J. Am. Chem. Soc., 2020, 142(31): 13582-13589. doi: 10.1021/jacs.0c06039http://dx.doi.org/10.1021/jacs.0c06039
GONG L K, HUANG F Q, ZHANG Z Z, et al. Multimode dynamic luminescent switching of lead halide hybrids for anti-counterfeiting and encryption [J]. Chem. Eng. J., 2021, 424: 130544-1-7. doi: 10.1016/j.cej.2021.130544http://dx.doi.org/10.1016/j.cej.2021.130544
LIAN L Y, ZHANG P, ZHANG X W, et al. Realizing near-unity quantum efficiency of zero-dimensional antimony halides through metal halide structural modulation [J]. ACS Appl. Mater. Interfaces, 2021, 13(49): 58908-58915. doi: 10.1021/acsami.1c18038http://dx.doi.org/10.1021/acsami.1c18038
SUN M F, LI Y, DONG X Y, et al. Thermoinduced structural-transformation and thermochromic luminescence in organic manganese chloride crystals [J]. Chem. Sci., 2019, 10(13): 3836-3839. doi: 10.1039/c8sc04711ahttp://dx.doi.org/10.1039/c8sc04711a
CHEN S Q, GAO J M, CHANG J Y, et al. Family of highly luminescent pure ionic copper(I) bromide based hybrid materials [J]. ACS Appl. Mater. Interfaces, 2019, 11(19): 17513-17520. doi: 10.1021/acsami.9b02418http://dx.doi.org/10.1021/acsami.9b02418
CHEN D, HAO S Q, ZHOU G J, et al. Lead-free broadband orange-emitting zero-dimensional hybrid (PMA)3InBr6 with direct band gap [J]. Inorg. Chem., 2019, 58(22): 15602-15609. doi: 10.1021/acs.inorgchem.9b02669http://dx.doi.org/10.1021/acs.inorgchem.9b02669
ZHOU G J, LIU Z Y, HUANG J L, et al. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: a case study of (C10H16N)2Zn1-xMnxBr4 solid solutions [J]. J. Phys. Chem. Lett., 2020, 11(15): 5956-5962. doi: 10.1021/acs.jpclett.0c01933http://dx.doi.org/10.1021/acs.jpclett.0c01933
ZHOU G J, DING J L, JIANG X X, et al. Coordination units of Mn2+ modulation toward tunable emission in zero-dimensional bromides for white light-emitting diodes [J]. J. Mater. Chem. C, 2022, 10(6): 2095-2102. doi: 10.1039/d1tc05680hhttp://dx.doi.org/10.1039/d1tc05680h
CUI B B, HAN Y, HUANG B L, et al. Locally collective hydrogen bonding isolates lead octahedra for white emission improvement [J]. Nat. Commun., 2019, 10: 5190-1-8. doi: 10.1038/s41467-019-13264-5http://dx.doi.org/10.1038/s41467-019-13264-5
SUN C, HE W L, LIU M J, et al. Zero-dimensional hybrid Cd-based perovskites with broadband bluish white-light emissions [J]. Chem. Asian J., 2020, 15(19): 3050-3058. doi: 10.1002/asia.202000616http://dx.doi.org/10.1002/asia.202000616
LIU X Y, YUAN F, ZHU C R, et al. Near-unity blue luminance from lead-free copper halides for light-emitting diodes [J]. Nano Energy, 2022, 91: 106664. doi: 10.1016/j.nanoen.2021.106664http://dx.doi.org/10.1016/j.nanoen.2021.106664
LI J L, SANG Y F, XU L J, et al. Highly efficient light-emitting diodes based on an organic antimony(III) halide hybrid [J]. Angew. Chem. Int. Ed., 2022, 61(6): e202113450-1-6. doi: 10.1002/anie.202113450http://dx.doi.org/10.1002/anie.202113450
YAN S Y, TIAN W L, CHEN H, et al. Synthesis of 0D manganese-based organic-inorganic hybrid perovskite and its application in lead-free red light-emitting diode [J]. Adv. Funct. Mater., 2021, 31(26): 2100855-1-10. doi: 10.1002/adfm.202100855http://dx.doi.org/10.1002/adfm.202100855
LIU M M, WAN Q, WANG H M, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes [J]. Nat. Photonics, 2021, 15(5): 379-385. doi: 10.1038/s41566-021-00766-2http://dx.doi.org/10.1038/s41566-021-00766-2
ZHOU C K, XU L J, LEE S J, et al. Recent advances in luminescent zero-dimensional organic metal halide hybrids [J]. Adv. Opt. Mater., 2021, 9(18): 2001766-1-17. doi: 10.1002/adom.202001766http://dx.doi.org/10.1002/adom.202001766
MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation [J]. J. Am. Chem. Soc., 2019, 141(25): 9764-9768. doi: 10.1021/jacs.9b02365http://dx.doi.org/10.1021/jacs.9b02365
MENG H X, CHEN B, ZHU W J, et al. Stable organic antimony halides with near-unity photoluminescence quantum yield for X-ray imaging [J]. Laser Photonics Rev., 2023, 17(7): 2201007. doi: 10.1002/lpor.202201007http://dx.doi.org/10.1002/lpor.202201007
HAN K, SAKHATSKYI K, JIN J C, et al. Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators [J]. Adv. Mater., 2022, 34(17): 2110420-1-8. doi: 10.1002/adma.202110420http://dx.doi.org/10.1002/adma.202110420
PENG H, WANG X X, TIAN Y, et al. Highly efficient cool-white photoluminescence of (Gua)3Cu2I5 single crystals: formation and optical properties [J]. ACS Appl. Mater. Interfaces, 2021, 13(11): 13443-13451. doi: 10.1021/acsami.1c02503http://dx.doi.org/10.1021/acsami.1c02503
ZHAO J Q, MA Y Y, ZHAO X J, et al. Stepwise crystalline structural transformation in 0D hybrid antimony halides with triplet turn-on and color-adjustable luminescence switching [J]. Research, 2023, 6: 0094-1-13. doi: 10.34133/research.0094http://dx.doi.org/10.34133/research.0094
PENG H, HUANG T, ZOU B S, et al. Organic-inorganic hybrid manganese bromine single crystal with dual-band photoluminescence from polaronic and bipolaronic excitons [J]. Nano Energy, 2021, 87: 106166-1-10. doi: 10.1016/j.nanoen.2021.106166http://dx.doi.org/10.1016/j.nanoen.2021.106166
HOEFLER S F, RATH T, FISCHER R, et al. A zero-dimensional mixed-anion hybrid halogenobismuthate(III) semiconductor: structural, optical, and photovoltaic properties [J]. Inorg. Chem., 2018, 57(17): 10576-10586. doi: 10.1021/acs.inorgchem.8b01161http://dx.doi.org/10.1021/acs.inorgchem.8b01161
ZHANG Y, TIRANI F F, PATTISON P, et al. Zero-dimensional hybrid iodobismuthate derivatives: from structure study to photovoltaic application [J]. Dalton Trans., 2020, 49(18): 5815-5822. doi: 10.1039/d0dt00015ahttp://dx.doi.org/10.1039/d0dt00015a
ZHANG Z H, YANG S Y, HU J M, et al. One-pot synthesis of novel ligand-free tin(Ⅱ)-based hybrid metal halide perovskite quantum dots with high anti-water stability for solution-processed UVC photodetectors [J]. Nanoscale, 2022, 14(11): 4170-4180. doi: 10.1039/d1nr07893chttp://dx.doi.org/10.1039/d1nr07893c
HUANG C R, LUO X Z, LIAO W Q, et al. An above-room-temperature molecular ferroelectric: [Cyclopentylammonium]2CdBr4 [J]. Inorg. Chem., 2020, 59(1): 829-836. doi: 10.1021/acs.inorgchem.9b03098http://dx.doi.org/10.1021/acs.inorgchem.9b03098
0
Views
365
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution