浏览全部资源
扫码关注微信
1.北京交通大学 物理科学与工程学院, 发光与光信息技术教育部重点实验室, 北京 10044
2.田纳西大学 材料物理与工程学院, 田纳西 诺克斯维尔 130022
Published:05 July 2023,
Received:03 June 2023,
Revised:24 June 2023,
扫 描 看 全 文
祝熙翔,胡斌.利用磁⁃光⁃电综合手段解析有机与钙钛矿材料的激发态动力学过程:实现跨学科交叉研究[J].发光学报,2023,44(07):1287-1299.
ZHU Xixiang,HU Bin.Analyzing Excited State Dynamics of Organic and Perovskite Materials Using Magnetic-optical-electrical Comprehensive Methods: Achieving Interdisciplinary Research and Cross-disciplinary Collaboration[J].Chinese Journal of Luminescence,2023,44(07):1287-1299.
祝熙翔,胡斌.利用磁⁃光⁃电综合手段解析有机与钙钛矿材料的激发态动力学过程:实现跨学科交叉研究[J].发光学报,2023,44(07):1287-1299. DOI: 10.37188/CJL.20230142.
ZHU Xixiang,HU Bin.Analyzing Excited State Dynamics of Organic and Perovskite Materials Using Magnetic-optical-electrical Comprehensive Methods: Achieving Interdisciplinary Research and Cross-disciplinary Collaboration[J].Chinese Journal of Luminescence,2023,44(07):1287-1299. DOI: 10.37188/CJL.20230142.
当前,有机和钙钛矿材料在发光显示和太阳能电池等领域得到了广泛的应用。为了更好地深入研究这些材料的特性和优化其性能,研究人员需要对它们的激发态动力学过程进行充分的了解。为此,利用磁⁃光⁃电综合手段成为了研究这些材料的重要方法之一。通过这些手段,可以对有机和钙钛矿材料的激发态动力学过程进行精确表征,并得出其结构的细节特征,如电子⁃空穴对分离过程和体内极化等。此外,这些手段还可以研究材料的磁光特性和电学性质,从而为实现这些材料的跨学科交叉研究提供支持。本文结合作者的研究工作,阐述了基于钙钛矿和有机材料,利用磁⁃光⁃电研究手段在非线性发光薄膜和光伏器件方面展开的相关研究。通过这些研究,可以更好地理解这些材料的性能和特征,并为开发更先进的光电器件奠定基础。
Currently, organic and perovskite materials have been widely used in fields such as luminescent displays and solar cells. To better understand the characteristics of these materials and optimize their performance, researchers need to have a thorough understanding of their excited state dynamics. Therefore, the use of magneto-opto-electronic comprehensive methods has become an important way to study these materials. Through these methods, the excited state dynamics of organic and perovskite materials can be accurately characterized, and detailed structural features such as electron-hole separation processes and intramolecular polarization can be obtained. In addition, these methods can also study the magneto-optical properties and electrical properties of materials, thereby providing support for interdisciplinary research on these materials. This article combines the author's research work to elaborate on the relevant research on nonlinear luminescent films and photovoltaic devices based on perovskite and organic materials using magneto-opto-electronic research methods. We can better understand the performance and characteristics of these materials and lay the foundation for the development of more advanced optoelectronic devices based on these studies.
有机钙钛矿磁-光-电跨学科
organicperovskitesmagneto-opto-electronicinterdisciplinary
GAO W, QI F, PENG Z X, et al. Achieving 19% power conversion efficiency in planar-mixed heterojunction organic solar cells using a pseudosymmetric electron acceptor [J]. Adv. Mater., 2022, 34(32): 2202089-1-11. doi: 10.1002/adma.202202089http://dx.doi.org/10.1002/adma.202202089
LI D H, DENG N, FU Y W, et al. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells [J]. Adv. Mater., 2023, 35(6): 2208211. doi: 10.1002/adma.202208211http://dx.doi.org/10.1002/adma.202208211
JIANG M Y, ZHI H F, ZHANG B, et al. Controlling morphology and voltage loss with ternary strategy triggers efficient all-small-molecule organic solar cells [J]. ACS Energy Lett., 2023, 8(2): 1058-1067. doi: 10.1021/acsenergylett.2c02348http://dx.doi.org/10.1021/acsenergylett.2c02348
KIM G, MIN H, LEE K S, et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells [J]. Science, 2020, 370(6512): 108-112. doi: 10.1126/science.abc4417http://dx.doi.org/10.1126/science.abc4417
XIAO K, LIN R X, HAN Q L, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant [J]. Nat. Energy, 2020, 5(11): 870-880. doi: 10.1038/s41560-020-00705-5http://dx.doi.org/10.1038/s41560-020-00705-5
XU W D, HU Q, BAI S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes [J]. Nat. Photonics, 2019, 13(6): 418-424. doi: 10.1038/s41566-019-0390-xhttp://dx.doi.org/10.1038/s41566-019-0390-x
KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nat. Photonics, 2021, 15(2): 148-155. doi: 10.1038/s41566-020-00732-4http://dx.doi.org/10.1038/s41566-020-00732-4
ZHU X X, DAI S W, LAI Y L, et al. Packing-shape effects of optical properties in amplified spontaneous emission through dynamics of orbit-orbit polarization interaction in hybrid perovskite quantum dots based on self-assembly [J]. J. Phys. Chem. Lett., 2021, 12(49): 11894-11901. doi: 10.1021/acs.jpclett.1c02978http://dx.doi.org/10.1021/acs.jpclett.1c02978
ZHU X X, XU H X, LIU Y T, et al. Two-photon up-conversion photoluminescence realized through spatially extended gap states in quasi-2D perovskite films [J]. Adv. Mater., 2019, 31(49): 1901240-1-8. doi: 10.1002/adma.201901240http://dx.doi.org/10.1002/adma.201901240
ZHU X X, ZHANG G C, ZHANG J, et al. Self-stimulated dissociation in non-fullerene organic bulk-heterojunction solar cells [J]. Joule, 2020, 4(11): 2443-2457. doi: 10.1016/j.joule.2020.09.005http://dx.doi.org/10.1016/j.joule.2020.09.005
HSIAO Y C, WU T, LI M X, et al. Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells [J]. Adv. Mater., 2015, 27(18): 2899-2906. doi: 10.1002/adma.201405946http://dx.doi.org/10.1002/adma.201405946
HSIAO Y C, WU T, LI M X, et al. Revealing optically induced dipole-dipole interaction effects on charge dissociation at donor: acceptor interfaces in organic solar cells under device-operating condition [J]. Nano Energy, 2016, 26: 595-602. doi: 10.1016/j.nanoen.2016.06.015http://dx.doi.org/10.1016/j.nanoen.2016.06.015
HU B, YAN L, SHAO M. Magnetic-field effects in organic semiconducting materials and devices [J]. Adv. Mater., 2009, 21(14-15): 1500-1516. doi: 10.1002/adma.200802386http://dx.doi.org/10.1002/adma.200802386
BYUN J, CHO H, WOLF C, et al. Efficient visible quasi-2D perovskite light-emitting diodes [J]. Adv. Mater., 2016, 28(34): 7515-7520. doi: 10.1002/adma.201601369http://dx.doi.org/10.1002/adma.201601369
YUAN M J, QUAN L N, COMIN R, et al. Perovskite energy funnels for efficient light-emitting diodes [J]. Nat. Nanotechnol., 2016, 11(10): 872-877. doi: 10.1038/nnano.2016.110http://dx.doi.org/10.1038/nnano.2016.110
BAN M Y, ZOU Y T, RIVETT J P H, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring [J]. Nat. Commun., 2018, 9(1): 3892-1-10. doi: 10.1038/s41467-018-06425-5http://dx.doi.org/10.1038/s41467-018-06425-5
LI M J, WEI Q, MUDULI S K, et al. Enhanced exciton and photon confinement in Ruddlesden-Popper perovskite microplatelets for highly stable low-threshold polarized lasing [J]. Adv. Mater., 2018, 30(23): 1707235-1-8. doi: 10.1002/adma.201707235http://dx.doi.org/10.1002/adma.201707235
RAGHAVAN C M, CHEN T P, LI S S, et al. Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals [J]. Nano Lett., 2018, 18(5): 3221-3228. doi: 10.1021/acs.nanolett.8b00990http://dx.doi.org/10.1021/acs.nanolett.8b00990
COHEN BEL, WIERZBOWSKA M, ETGAR L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells [J]. Adv. Funct. Mater., 2017, 27(5): 1604733-1-7. doi: 10.1002/adfm.201604733http://dx.doi.org/10.1002/adfm.201604733
GRANCINI G, ROLDÁN-CARMONA C, ZIMMERMANN I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering [J]. Nat. Commun., 2017, 8: 15684-1-8. doi: 10.1038/ncomms15684http://dx.doi.org/10.1038/ncomms15684
QUAN L N, YUAN M J, COMIN R, et al. Ligand-stabilized reduced-dimensionality perovskites [J]. J. Ame. Chem. Soc., 2016, 138(8): 2649-2655. doi: 10.1021/jacs.5b11740http://dx.doi.org/10.1021/jacs.5b11740
WANG N N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells [J]. Nat. Photonics, 2016, 10(11): 699-704. doi: 10.1038/nphoton.2016.185http://dx.doi.org/10.1038/nphoton.2016.185
YANG R, LI R Z, CAO Y, et al. Oriented quasi-2D perovskites for high performance optoelectronic devices [J]. Adv. Mater., 2018, 30(51): 1804771-1-8. doi: 10.1002/adma.201804771http://dx.doi.org/10.1002/adma.201804771
KIM Y H, KIM J S, LEE T W. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes [J]. Adv. Mater., 2019, 31(47): 1804595-1-28. doi: 10.1002/adma.201970335http://dx.doi.org/10.1002/adma.201970335
YANG X L, ZHANG X W, DENG J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation [J]. Nat. Commun., 2018, 9(1): 570-1-8. doi: 10.1038/s41467-018-02978-7http://dx.doi.org/10.1038/s41467-018-02978-7
BLANCON J C, TSAI H, NIE W, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites [J]. Science, 2017, 355(6331): 1288-1292. doi: 10.1126/science.aal4211http://dx.doi.org/10.1126/science.aal4211
SHANG Q Y, WANG Y N, ZHONG Y G, et al. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission [J]. J. Phys. Chem. Lett., 2017, 8(18): 4431-4438. doi: 10.1021/acs.jpclett.7b01857http://dx.doi.org/10.1021/acs.jpclett.7b01857
CHEN P, MENG Y, AHMADI M, et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes [J]. Nano Energy, 2018, 50: 615-622. doi: 10.1016/j.nanoen.2018.06.008http://dx.doi.org/10.1016/j.nanoen.2018.06.008
PEDESSEAU L, SAPORI D, TRAORE B, et al. Advances and promises of layered halide hybrid perovskite semiconductors [J]. ACS Nano, 2016, 10(11): 9776-9786. doi: 10.1021/acsnano.6b05944http://dx.doi.org/10.1021/acsnano.6b05944
LIN Y, FANG Y, ZHAO J J, et al. Unveiling the operation mechanism of layered perovskite solar cells [J]. Nat. Commun., 2019, 10(1): 1008-1-11. doi: 10.1038/s41467-019-08958-9http://dx.doi.org/10.1038/s41467-019-08958-9
HE L, LI M X, URBAS A, et al. Magnetophotoluminescence line-shape narrowing through interactions between excited states in organic semiconducting materials [J]. Phys. Rev. B, 2014, 89(15): 155304-1-6. doi: 10.1103/physrevb.89.155304http://dx.doi.org/10.1103/physrevb.89.155304
WANG M S, LIN J, HSIAO Y C, et al. Investigating underlying mechanism in spectral narrowing phenomenon induced by microcavity in organic light emitting diodes [J]. Nat. Commun., 2019, 10(1): 1614-1-7. doi: 10.1038/s41467-019-09585-0http://dx.doi.org/10.1038/s41467-019-09585-0
ZHANG J, WU T, DUAN J S, et al. Exploring spin-orbital coupling effects on photovoltaic actions in Sn and Pb based perovskite solar cells [J]. Nano Energy, 2017, 38: 297-303. doi: 10.1016/j.nanoen.2017.05.061http://dx.doi.org/10.1016/j.nanoen.2017.05.061
QIN W, XU H X, HU B. Effects of spin states on photovoltaic actions in organo-metal halide perovskite solar cells based on circularly polarized photoexcitation [J]. ACS Photonics, 2017, 4(11): 2821-2827. doi: 10.1021/acsphotonics.7b00801http://dx.doi.org/10.1021/acsphotonics.7b00801
XU H X, WANG M S, YU Z G, et al. Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes [J]. Adv. Phys., 2019, 68(2): 49-121. doi: 10.1080/00018732.2019.1590295http://dx.doi.org/10.1080/00018732.2019.1590295
LIU J, CHEN S S, QIAN D P, et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force [J]. Nat. Energy, 2016, 1(7): 16089-1-7. doi: 10.1038/nenergy.2016.89http://dx.doi.org/10.1038/nenergy.2016.89
PERDIGÓN-TORO L, ZHANG H T, MARKINA A, et al. Barrierless free charge generation in the high-performance PM6∶Y6 bulk heterojunction non-fullerene solar cell [J]. Adv. Mater., 2020, 32(9): 1906763-1-9. doi: 10.1002/adma.201906763http://dx.doi.org/10.1002/adma.201906763
ZANG H D, LIANG Y Y, YU L P, et al. Intra-molecular donor⁃acceptor interaction effects on charge dissociation, charge transport, and charge collection in bulk-heterojunction organic solar cells [J]. Adv. Energy Mater., 2011, 1(5): 923-929. doi: 10.1002/aenm.201100304http://dx.doi.org/10.1002/aenm.201100304
ZANG H D, XU Z H, HU B. Magneto-optical investigations on the formation and dissociation of intermolecular charge-transfer complexes at donor⁃acceptor interfaces in bulk-heterojunction organic solar cells [J]. J. Phys. Chem. B, 2010, 114(17): 5704-5709. doi: 10.1021/jp100241ghttp://dx.doi.org/10.1021/jp100241g
0
Views
136
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution