With the development of artificial intelligence, big data, cloud computing, Internet of Things, mobile electronics, and so on, the transmission capacity of the traditional optical fiber communication system carried by the rare earth ion-doped single-core single-mode fiber amplifier has gradually approached the limit of Shannon's law. It is necessary to develop a new material system to broaden the transmission capacity of the optical fiber communication system. Compared with rare earth ions, quantum dots(QDs) have a wide luminescence bandwidth and tunable wavelength, and the luminescence properties of QDs can be modulated by a variety of chemical means. QDs-doped optical amplifier shows broadband optical gain properties, which has attracted wide attention from academia and industry. In this context, this paper proposes to integrate chemically synthesized PbS/CdS core-shell QDs with low-loss polymer to obtain QDs -doped fiber amplifier(QDFA), realize tunable wavelength and broadband optical amplification in the near-infrared (NIR) communication band. This paper studies and reveals the factors and mechanisms affecting the continuity of polymer fiber. It proposes to reduce the additional pressure related to surface tension, contraction force during solidifying, the friction force by the inner wall of fiber core, and improve the traction force from the pumping by vacuum pump to obtain continuous optical fiber. By optimizing these factors, we obtained continuous fiber core based on heat curing PDMS and light curing NOA61 and NOA85 UV glue. Consequently, the QDFAs realize the highest gain of 6.5 dB, and gain bandwidth of more than 100 nm. The results of this paper will facilitate the development of quantum dot fiber optic devices and broadband optical communication technologies.
RICHARDSON D J, FINI J M, NELSON L E. Space-division multiplexing in optical fibres [J]. Nat. Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94http://dx.doi.org/10.1038/nphoton.2013.94
PUTTNAM B J, RADEMACHER G, LUÍS R S. Space-division multiplexing for optical fiber communications [J]. Optica, 2021, 8(9): 1186-1203. doi: 10.1364/optica.427631http://dx.doi.org/10.1364/optica.427631
CHENG C, HU N S, CHENG X Y. Experimental realization of a PbSe quantum dot doped fiber amplifier with ultra-bandwidth characteristic [J]. Opt. Commun., 2017, 382: 470-476. doi: 10.1016/j.optcom.2016.08.036http://dx.doi.org/10.1016/j.optcom.2016.08.036
CHENG C, WANG F J, CHENG X Y. PbSe quantum-dot-doped broadband fiber amplifier based on sodium-aluminum-borosilicate-silicate glass [J]. Opt. Laser Technol., 2020, 122: 105812-1-8. doi: 10.1016/j.optlastec.2019.105812http://dx.doi.org/10.1016/j.optlastec.2019.105812
LIU Y, KIM D, MORRIS O P, et al. Origins of the stokes shift in PbS quantum dots: impact of polydispersity, ligands, and defects [J]. ACS Nano, 2018, 12(3): 2838-2845. doi: 10.1021/acsnano.8b00132http://dx.doi.org/10.1021/acsnano.8b00132
HUANG X J, PENG Z X, GUO Q Y, et al. Energy transfer process and temperature-dependent photoluminescence of PbS quantum dot-doped glasses [J]. J. Am. Ceram. Soc., 2019, 102(6): 3391-3401. doi: 10.1111/jace.16227http://dx.doi.org/10.1111/jace.16227
CHEN D Y, XU B B, FANG Z J, et al. Broadband optical amplification of PbS quantum-dot-doped glass fibers [J]. Adv. Photonics Res., 2022, 3(9): 2200097-1-9. doi: 10.1002/adpr.202200097http://dx.doi.org/10.1002/adpr.202200097
WHITTAKER C A, PERRET A, FORTIER C W, et al. Light-generating CdSe/CdS colloidal quantum dot-doped plastic optical fibers [J]. ACS Appl. Nano Mater., 2020, 3(7): 6478-6488. doi: 10.1021/acsanm.0c00946http://dx.doi.org/10.1021/acsanm.0c00946
SUN X L, ZHAO W, LIU L Y, et al. Enhancing environmental stability of a PbS quantum dot optical fiber amplifier via rational interface design [J]. Opt. Quant. Electron., 2018, 50(4): 173-1-8. doi: 10.1007/s11082-018-1431-2http://dx.doi.org/10.1007/s11082-018-1431-2
HUANG X J, FANG Z J, PENG Z X, et al. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers [J]. Opt. Express, 2017, 25(17): 19691-19700. doi: 10.1364/oe.25.019691http://dx.doi.org/10.1364/oe.25.019691
ZHENG J J, DONG Y H, PAN X P, et al. Ultra-wideband and flat-gain optical properties of the PbS quantum dots-doped silica fiber [J]. Opt. Express, 2019, 27(26): 37900-37909. doi: 10.1364/oe.27.037900http://dx.doi.org/10.1364/oe.27.037900
FAN M D, YAN Y Y, ZHOU S, et al. Mesoporous silica enriched PbS quantum dots for optical fiber amplifiers [J]. Opt. Commun., 2021, 499: 127310-1-6. doi: 10.1016/j.optcom.2021.127310http://dx.doi.org/10.1016/j.optcom.2021.127310
WHITWORTH G L, DALMASES M, TAGHIPOUR N, et al. Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window [J]. Nat. Photonics, 2021, 15(10): 738-742. doi: 10.1038/s41566-021-00878-9http://dx.doi.org/10.1038/s41566-021-00878-9
PARK Y S, ROH J, DIROLL B T, et al. Colloidal quantum dot lasers [J]. Nat. Rev. Mater., 2021, 6(5): 382-401. doi: 10.1038/s41578-020-00274-9http://dx.doi.org/10.1038/s41578-020-00274-9
VASILOPOULOU M, FAKHARUDDIN A, GARCÍA DE ARQUER F P, et al. Advances in solution-processed near-infrared light-emitting diodes [J]. Nat. Photonics, 2021, 15(9): 656-669. doi: 10.1038/s41566-021-00855-2http://dx.doi.org/10.1038/s41566-021-00855-2
HOU X Q, KANG J, QIN H Y, et al. Engineering auger recombination in colloidal quantum dots via dielectric screening [J]. Nat. Commun., 2019, 10(1): 1750-1-11. doi: 10.1038/s41467-019-09737-2http://dx.doi.org/10.1038/s41467-019-09737-2
AVDEEV I D, NESTOKLON M O, GOUPALOV S V. Exciton fine structure in lead chalcogenide quantum dots: valley mixing and crucial role of intervalley electron-hole exchange [J]. Nano Lett., 2020, 20(12): 8897-8902. doi: 10.1021/acs.nanolett.0c03937http://dx.doi.org/10.1021/acs.nanolett.0c03937
CHRISTODOULOU S, RAMIRO I, OTHONOS A, et al. Single-exciton gain and stimulated emission across the infrared telecom band from robust heavily doped PbS colloidal quantum dots [J]. Nano Lett., 2020, 20(8): 5909-5915. doi: 10.1021/acs.nanolett.0c01859http://dx.doi.org/10.1021/acs.nanolett.0c01859
Rapid Detection of Neonicotinoids by Metal Halide CH3NH3PbBr3 Perovskite Quantum Dots
Current Status and Challenges in Indium Phosphide Quantum Dots and Their Electroluminescence
Color Conversion Characteristics of Micro-LED Based on Quantum Dot@Ordered Mesoporous Composite Materials
Optical Properties of CsPbxSn1-xBr3/a-ZrP Perovskite Quantum Dots for White Light-emitting Diodes
Related Author
Chen Daoyuan
Cui Junjie
Xu Beibei
Man Tao
Zhang Duoduo
Tu Youyu
Qiu Jianrong
ZHOU Ranfeng
Related Institution
College of Optical Science and Engineering, State Key Laboratory of Extreme Photonics and Instrumentation Zhejiang University
Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science
College of Life Science, Yangtze University
Key Laboratory of New Display Materials and Devices, Ministry of Industry and Information Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology
College of Physical Science and Engineering Technology, Guangxi University