浏览全部资源
扫码关注微信
1.华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510640
2.东莞伏安光电科技有限公司, 广东 广州 510006
3.沈阳工业大学 石油化工学院, 辽宁 辽阳 111003
Published:05 July 2023,
Received:26 May 2023,
Revised:10 June 2023,
扫 描 看 全 文
许雷,俞越,潘玉钰等.基于蒽核的高性能深蓝光“热激子”材料[J].发光学报,2023,44(07):1300-1307.
XU Lei,YU Yue,PAN Yuyu,et al.High-performance Deep Blue “Hot Exciton” Materials Based on Anthracene[J].Chinese Journal of Luminescence,2023,44(07):1300-1307.
许雷,俞越,潘玉钰等.基于蒽核的高性能深蓝光“热激子”材料[J].发光学报,2023,44(07):1300-1307. DOI: 10.37188/CJL.20230137.
XU Lei,YU Yue,PAN Yuyu,et al.High-performance Deep Blue “Hot Exciton” Materials Based on Anthracene[J].Chinese Journal of Luminescence,2023,44(07):1300-1307. DOI: 10.37188/CJL.20230137.
蓝光OLED材料是电致发光领域的关键和难点。基于高能激发态转换的“热激子”材料表现出优异蓝光材料的潜能。本文通过调节给受体的推拉电子能力,以蒽为核心构筑单元、三苯基苯为弱给体、苯氰基为受体,设计合成了一种新型D⁃π⁃A结构分子TACN。扭曲的三苯基苯提供了高度扭曲的分子构象,有效减弱了聚集态下的猝灭效应,因此TACN表现出高的荧光量子产率(聚集态下47%)。实验结果和理论分析表明,TACN具备“热激子”特征,其大的T
2
⁃T
1
能隙(1.45 eV)有效阻碍了从T
2
到T
1
的内转换(IC)过程,而小的T
2
⁃S
1
能差(0.18 eV,T
2
>
S
1
)有利于促进反向系间窜越(RISC)过程。基于TACN的非掺杂器件表现出深蓝色发射(
λ
max
= 444 nm),半峰宽(FWHM)为59 nm,色坐标为(0.17,0.13)。其最大外量子效率(EQE
max
)为8.3%,相应的激子利用率(EUE)最高为88.7%。
The blue OLED material plays a vital role in the field of electroluminescence. Based on high-energy excited state transition, the “hot exciton” materials show the potential of excellent blue light emitting. We designed and synthesized a novel D-π-A structure molecule TACN using anthracene as the core building unit, triphenylbenzene as the weak donor and phenylcyanogen as the acceptor by adjusting the ability of pushing and pulling electrons. Distorted triphenylbenzene provides a highly distorted molecular conformation, which effectively attenuates the quenching effect in the aggregated state. Therefore, TACN exhibits a high fluorescence quantum yield (47% in the aggregated state). The experimental results and theoretical analysis show that TACN has the “hot exciton” characteristic, and its large T
2
-T
1
gap (1.45 eV) effectively hinders the internal conversion (IC) process from T
2
to T
1
, while its small T
2
-S
1
energy difference (0.18 eV, T
2
>
S
1
) facilitates the reverse intersystem crossing (RISC) process. Non-doped devices based on TACN exhibit dark blue emission (
λ
max
= 444 nm), full width at half maximum (FWHM) of 59 nm, and color coordinates of (0.17, 0.13). Its maximum external quantum efficiency (EQE
max
) is 8.3% and corresponding exciton utilization (EUE) is up to 88.7%.
有机发光二极管热激子蓝光材料蒽反向系间窜越
organic light emitting diodeshot excitonblue emitteranthracenereverse intersystem crossing
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51: 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
HU Y X, MIAO J S, HUA T, et al. Efficient selenium-integrated TADF OLEDs with reduced roll-off [J]. Nat. Photonics, 2022, 16(11): 803-810. doi: 10.1038/s41566-022-01083-yhttp://dx.doi.org/10.1038/s41566-022-01083-y
SUN J, AHN H, KANG S, et al. Exceptionally stable blue phosphorescent organic light-emitting diodes [J]. Nat. Photonics, 2022, 16(3): 212-218. doi: 10.1038/s41566-022-00958-4http://dx.doi.org/10.1038/s41566-022-00958-4
JANG H J, LEE J Y, BAEK G W, et al. Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years [J]. J. Inform. Display, 2022, 23(1): 1-17. doi: 10.1080/15980316.2022.2035835http://dx.doi.org/10.1080/15980316.2022.2035835
XU Y W, XU P, HU D H, et al. Recent progress in hot exciton materials for organic light-emitting diodes [J]. Chem. Soc. Rev., 2021, 50(2): 1030-1069. doi: 10.1039/d0cs00391chttp://dx.doi.org/10.1039/d0cs00391c
LIU X K, ZHENG C J, LO M F, et al. A multifunctional phosphine oxide-diphenylamine hybrid compound as a high performance deep-blue fluorescent emitter and green phosphorescent host [J]. Chem. Commun., 2014, 50(16): 2027-2029. doi: 10.1039/c3cc48531ehttp://dx.doi.org/10.1039/c3cc48531e
OBOLDA A, PENG Q M, HE C Y, et al. Triplet-polaron-interaction-induced upconversion from triplet to singlet: a possible way to obtain highly efficient OLEDs [J]. Adv. Mater., 2016, 28(23): 4740-4746. doi: 10.1002/adma.201504601http://dx.doi.org/10.1002/adma.201504601
MONKMAN A. Why do we still need a stable long lifetime deep blue OLED emitter? [J]. ACS. Appl. Mater. Interfaces, 2022, 14(18): 20463-20467. doi: 10.1021/acsami.1c09189http://dx.doi.org/10.1021/acsami.1c09189
LIU Y C, LI C S, REN Z J, et al. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes [J]. Nat. Rev. Mater., 2018, 3(4): 18020-1-20. doi: 10.1038/natrevmats.2018.20http://dx.doi.org/10.1038/natrevmats.2018.20
JEON S K, LEE H L, YOOK K S, et al. Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material [J]. Adv. Mater., 2019, 31(34): 1803524-1-20. doi: 10.1002/adma.201803524http://dx.doi.org/10.1002/adma.201803524
BALDO M A, O'BRIEN D F, THOMPSON M E, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film [J]. Phys. Rev. B, 1999, 60(20): 14422-14428. doi: 10.1103/physrevb.60.14422http://dx.doi.org/10.1103/physrevb.60.14422
CAO Y, PARKER I D, YU G, et al. Improved quantum efficiency for electroluminescence in semiconducting polymers [J]. Nature, 1999, 397(6718): 414-417. doi: 10.1038/17087http://dx.doi.org/10.1038/17087
MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synth. Met., 1998, 94(3): 245-248. doi: 10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
QIAO X F, LIU H, XIAO S, et al. Observation of vibrational phosphorescence peaks at room temperature and their impacts on triplet⁃triplet annihilation [J]. Adv. Opt. Mater., 2022, 10(10): 2200074-1-6. doi: 10.1002/adom.202200074http://dx.doi.org/10.1002/adom.202200074
WANG C, REICHENAUER F, KITZMANN W R, et al. Efficient triplet-triplet annihilation upconversion sensitized by a chromium(Ⅲ) complex via an underexplored energy transfer mechanism [J]. Angew. Chem. Int. Ed, 2022, 61(27): e202202238-1-8. doi: 10.1002/anie.202202238http://dx.doi.org/10.1002/anie.202202238
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
YANG Z Y, MAO Z, XIE Z L, et al. Recent advances in organic thermally activated delayed fluorescence materials [J]. Chem. Soc. Rev., 2017, 46(3): 915-1016. doi: 10.1039/c6cs00368khttp://dx.doi.org/10.1039/c6cs00368k
HATAKEYAMA T, SHIREN K, NAKAJIMA K, et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect [J]. Adv. Mater., 2016, 28(14): 2777-2781. doi: 10.1002/adma.201505491http://dx.doi.org/10.1002/adma.201505491
LI W J, LIU D D, SHEN F Z, et al. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence [J]. Adv. Funct. Mater., 2012, 22(13): 2797-2803. doi: 10.1002/adfm.201200116http://dx.doi.org/10.1002/adfm.201200116
PAN Y Y, LI W J, ZHANG S T, et al. High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons [J]. Adv. Opt. Mater., 2014, 2(6): 510-515. doi: 10.1002/adom.201300467http://dx.doi.org/10.1002/adom.201300467
YU Y, XU P, PAN Y Y, et al. Pyrene-based emitters with ultrafast upper-level triplet-singlet intersystem crossing for high-efficiency, low roll-off blue organic light-emitting diode [J]. Adv. Opt. Mater., 2023, 11(4): 2202217-1-8. doi: 10.1002/adom.202202217http://dx.doi.org/10.1002/adom.202202217
XU Y W, LIANG X M, ZHOU X H, et al. Highly efficient blue fluorescent OLEDs based on upper level triplet⁃singlet intersystem crossing [J]. Adv. Mater., 2019, 31(12): 1807388-1-8. doi: 10.1002/adma.201807388http://dx.doi.org/10.1002/adma.201807388
ROTHBERG L J, LOVINGER A J. Status of and prospects for organic electroluminescence [J]. J. Mater. Res., 1996, 11(12): 3174-3187. doi: 10.1557/jmr.1996.0403http://dx.doi.org/10.1557/jmr.1996.0403
PAN Y Y, HUANG J, WANG Z M, et al. Computational investigation on the large energy gap between the triplet excited-states in acenes [J]. RSC Adv., 2017, 7(43): 26697-26703. doi: 10.1039/c7ra02559ahttp://dx.doi.org/10.1039/c7ra02559a
潘玉钰. 热激子反系间窜越实现高效率有机电致发光材料的分子设计原理 [D]. 长春: 吉林大学, 2015.
PAN Y Y. Molecular Design Principle for High⁃efficiency Organic Electroluminescent Materials Based on Reverse Intersystem Crossing Process Along “Hot” Exciton Channel [D]. Changchun: Jilin University, 2015. (in Chinese)
LAWETZ V, ORLANDI G, SIEBRAND W. Theory of intersystem crossing in aromatic hydrocarbons [J]. J. Chem. Phys., 1972, 56(8): 4058-4072. doi: 10.1063/1.1677816http://dx.doi.org/10.1063/1.1677816
BELJONNE D, SHUAI Z, POURTOIS G, et al. Spin-orbit coupling and intersystem crossing in conjugated polymers: a configuration interaction description [J]. J. Phys. Chem. A, 2001, 105(15): 3899-3907. doi: 10.1021/jp010187whttp://dx.doi.org/10.1021/jp010187w
0
Views
311
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution