浏览全部资源
扫码关注微信
1.福州大学 物理与信息工程学院, 福建 福州 350000
2.闽都创新实验室, 福建 福州 350000
Published:05 October 2023,
Received:24 May 2023,
Revised:10 June 2023,
扫 描 看 全 文
王丁可,胡海龙,郭太良等.超高分辨LED显示[J].发光学报,2023,44(10):1721-1732.
WANG Dingke,HU Hailong,GUO Tailiang,et al.Ultra-high Resolution LED Display[J].Chinese Journal of Luminescence,2023,44(10):1721-1732.
王丁可,胡海龙,郭太良等.超高分辨LED显示[J].发光学报,2023,44(10):1721-1732. DOI: 10.37188/CJL.20230136.
WANG Dingke,HU Hailong,GUO Tailiang,et al.Ultra-high Resolution LED Display[J].Chinese Journal of Luminescence,2023,44(10):1721-1732. DOI: 10.37188/CJL.20230136.
分辨率是评估一个显示器性能的重要指标之一。不仅限于消费电子产品领域中厂商的竞争需求,科研、工业和医学等领域的发展也迫切需要更高分辨率的显示设备以显示精度更高的图像。除此之外,虚拟和增强现实技术使超高分辨率显示器能提供更丰富的人机交互体验。超高分辨率显示技术也逐渐成为一个热门的研究方向。本文介绍了基于发光二极管的各类新型显示技术中实现高分辨率显示的技术手段和实现方案,总结了每种方案的适用条件和优缺点,并指出了各项技术现阶段面临的主要挑战。一直以来,我们团队长期致力于量子点发光二极管显示的电致发光图案化和高分辨率显示研究,本文也介绍了本团队近期取得的突破性的研究成果。
Resolution is a critical parameter in assessing the performance of a display. The demand for higher resolution displays extends beyond the competitive needs of consumer electronics manufacturers to the urgent requirements of fields such as scientific research, industry, and medicine, which need high-resolution displays to present more precise images. In addition, virtual and augmented reality technologies enable ultra-high-resolution displays to provide richer human-computer interaction experiences. Ultra-high-resolution display technology has gradually become a popular research direction. This article introduces the technical means and solutions for achieving high-resolution displays in various new display technologies based on light-emitting diodes, summarizes the applicable conditions and advantages and disadvantages of each solution, and points out the main challenges facing each technology at this stage. Our team has long been committed to the electroluminescent patterning and high-resolution display research of quantum dot light-emitting diode displays. This article introduces the groundbreaking research results from our team has achieved recently.
超高分辨率显示微发光二极管有机发光二极管量子点发光二极管
ultra-high resolution displaymicro lighting emitting diodesorganic lighting emitting diodesquantum dot light emitting diodes
ZHENG Y T, YU Y S, CHEN W, et al. High-resolution light-emitting devices for display applications [J]. Sci. China Mater., 2023, 66(6): 2128-2145. doi: 10.1007/s40843-022-2410-4http://dx.doi.org/10.1007/s40843-022-2410-4
HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives [J]. Light Sci. Appl., 2020, 9(1): 105-1-16. doi: 10.1038/s41377-020-0341-9http://dx.doi.org/10.1038/s41377-020-0341-9
SCHUBERT E F. Light⁃emitting Diodes [M]. 2nd ed. Cambridge: Cambridge University Press, 2006. doi: 10.1017/cbo9780511790546http://dx.doi.org/10.1017/cbo9780511790546
NAKAMURA S, HARADA Y, SENO M. Novel metalorganic chemical vapor deposition system for GaN growth [J]. Appl. Phys. Lett., 1991, 58(18): 2021-2023. doi: 10.1063/1.105239http://dx.doi.org/10.1063/1.105239
NAKAMURA S, SENOH M, IWASA N, et al. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures [J]. Jpn. J. Appl. Phys., 1995, 34(7A): L797. doi: 10.1143/jjap.34.l797http://dx.doi.org/10.1143/jjap.34.l797
LIN T, KUO H C, JIANG X D, et al. Recombination pathways in green InGaN/GaN multiple quantum wells [J]. Nanoscale Res. Lett., 2017, 12(1): 137-1-6. doi: 10.1186/s11671-017-1922-2http://dx.doi.org/10.1186/s11671-017-1922-2
ZHANG K, LIU Z J, KWOK H S. 25.3: Current driving active matrix micro-LED display[J]. SID Symp. Dig. Tech. Pap., 2018, 49(S1): 272-275. doi: 10.1002/sdtp.12700http://dx.doi.org/10.1002/sdtp.12700
LIU Z J, CHONG W C, WONG K M, et al. A novel BLU-free full-color LED projector using LED on silicon micro-displays [J]. IEEE Photonics Technol. Lett., 2013, 25(23): 2267-2270. doi: 10.1109/lpt.2013.2285229http://dx.doi.org/10.1109/lpt.2013.2285229
ZHANG S L, GONG Z, MCKENDRY J J D, et al. CMOS-controlled color-tunable smart display [J]. IEEE Photonics J., 2012, 4(5): 1639-1646. doi: 10.1109/jphot.2012.2212181http://dx.doi.org/10.1109/jphot.2012.2212181
TSAI Y L, HUANG Y M, YANG S M, et al. High performance ultraviolet micro-LED arrays for fine-pitch micro displays [C]. Proceedings of the 2019 IEEE Photonics Conference (IPC), San Antonio, 2019: 1-2. doi: 10.1109/ipcon.2019.8908371http://dx.doi.org/10.1109/ipcon.2019.8908371
HAN S C, XU C C, LI H J, et al. AlGaInP-based Micro-LED array with enhanced optoelectrical properties [J]. Opt. Mater., 2021, 114: 110860-1-6. doi: 10.1016/j.optmat.2021.110860http://dx.doi.org/10.1016/j.optmat.2021.110860
ASAD M, LI Q, SACHDEV M, et al. Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates [J]. Nano Energy, 2020, 73: 104724-1-8. doi: 10.1016/j.nanoen.2020.104724http://dx.doi.org/10.1016/j.nanoen.2020.104724
CHOI H W, JEON C W, DAWSON M D, et al. Fabrication and performance of parallel-addressed InGaN micro-LED arrays [J]. IEEE Photonics Technol. Lett., 2003, 15(4): 510-512. doi: 10.1109/lpt.2003.809257http://dx.doi.org/10.1109/lpt.2003.809257
OU F, CHONG W C, XU Q C, et al. P‐125: Monochromatic active matrix micro-LED micro-displays with > 5 000 dpi pixel density fabricated using monolithic hybrid integration process [J]. SID Symp. Dig. Tech. Pap., 2018, 49(1): 1677-1680. doi: 10.1002/sdtp.12309http://dx.doi.org/10.1002/sdtp.12309
KYMISSIS I, BEHRMAN K. 44‐4: a brief survey of microLED technologies[J]. SID Symp. Dig. Tech. Pap., 2020, 51(1): 650-652. doi: 10.1002/sdtp.13951http://dx.doi.org/10.1002/sdtp.13951
LI P A, ZHANG X, LI Y F, et al. Monolithic full-color microdisplay using patterned quantum dot photoresist on dual-wavelength LED epilayers [J]. J. Soc. Inf. Disp., 2021, 29(3): 157-165. doi: 10.1002/jsid.966http://dx.doi.org/10.1002/jsid.966
XIE B, HU R, LUO X B. Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives [J]. J. Electron. Packag., 2016, 138(2): 020803-1-13. doi: 10.1115/1.4033143http://dx.doi.org/10.1115/1.4033143
BRICHKIN S B, RAZUMOV V F. Colloidal quantum dots: synthesis, properties and applications [J]. Russ. Chem. Rev., 2016, 85(12): 1297-1-16. doi: 10.1070/rcr4656http://dx.doi.org/10.1070/rcr4656
RICHNER P, GALLIKER P, LENDENMANN T, et al. Full-spectrum flexible color printing at the diffraction limit [J]. ACS Photonics, 2016, 3(5): 754-757. doi: 10.1021/acsphotonics.6b00131http://dx.doi.org/10.1021/acsphotonics.6b00131
LEE C H, HONG Y J, KIM Y J, et al. GaN/ZnO nanotube heterostructure light-emitting diodes fabricated on Si [J]. IEEE J. Sel. Top. Quantum Electron., 2011, 17(4): 966-970. doi: 10.1109/jstqe.2010.2062493http://dx.doi.org/10.1109/jstqe.2010.2062493
RA Y H, WANG R J, WOO S Y, et al. Full-color single nanowire pixels for projection displays [J]. Nano Lett., 2016, 16(7): 4608-4615. doi: 10.1021/acs.nanolett.6b01929http://dx.doi.org/10.1021/acs.nanolett.6b01929
WANG R J, NGUYEN H P T, CONNIE A T, et al. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon [J]. Opt. Express, 2014, 22(S7): A1768-A1775. doi: 10.1364/oe.22.0a1768http://dx.doi.org/10.1364/oe.22.0a1768
WANG R J, RA Y H, WU Y P, et al. Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire [C]. Proceedings of the SPIE 9748, Gallium Nitride Materials and Devices Ⅺ, San Francisco, 2016: 165-173. doi: 10.1117/12.2213741http://dx.doi.org/10.1117/12.2213741
HONG Y J, LEE C H, YOON A, et al. Visible-color-tunable light-emitting diodes [J]. Adv. Mater., 2011, 23(29): 3284-3288. doi: 10.1002/adma.201100806http://dx.doi.org/10.1002/adma.201100806
BEHRMAN K, KYMISSIS I. Micro light-emitting diodes [J]. Nat. Electron., 2022, 5(9): 564-573. doi: 10.1038/s41928-022-00828-5http://dx.doi.org/10.1038/s41928-022-00828-5
PARK S I, XIONG Y J, KIM R H, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays [J]. Science, 2009, 325(5943): 977-981. doi: 10.1126/science.1175690http://dx.doi.org/10.1126/science.1175690
BIBL A, HIGGINSON J A, LAW H F S, et al. Method of transferring a micro device:US CN TW, US9521823B2 [P]. 2012.
BEHRMAN K, FOUILLOUX J, IRELAND T, et al. Early defect identification for micro light-emitting diode displays via photoluminescent and cathodoluminescent imaging [J]. J. Soc. Inf. Disp., 2021, 29(4): 264-274. doi: 10.1002/jsid.985http://dx.doi.org/10.1002/jsid.985
HENLEY F J. 18-1: Invited paper: evaluating in-process test compatibility of proposed mass-transfer technologies to achieve efficient, high-yield microLED mass-production[J]. SID Symp. Dig. Tech. Pap., 2019, 50(1): 232-235. doi: 10.1002/sdtp.12898http://dx.doi.org/10.1002/sdtp.12898
CHANG W, KIM J, KIM M, et al. Concurrent self-assembly of RGB microLEDs for next-generation displays [J]. Nature, 2023, 617(7960): 287-291. doi: 10.1038/s41586-023-05889-whttp://dx.doi.org/10.1038/s41586-023-05889-w
DAWSON R M A, SHEN Z, FURST D A, et al. A polysilicon active matrix organic light emitting diode display with integrated drivers[J]. SID Symp. Dig. Tech. Pap., 1999, 30(1): 438-441. doi: 10.1889/1.1834051http://dx.doi.org/10.1889/1.1834051
LEE J Y, KWON J H, CHUNG H K. High efficiency and low power consumption in active matrix organic light emitting diodes [J]. Organ. Electron., 2003, 4(2-3): 143-148. doi: 10.1016/j.orgel.2003.08.013http://dx.doi.org/10.1016/j.orgel.2003.08.013
KIM J W, CHOE W J, HWANG K H, et al. 78-2: the optimum display for virtual reality[J]. SID Symp. Dig. Tech. Pap., 2017, 48(1): 1146-1149. doi: 10.1002/sdtp.11845http://dx.doi.org/10.1002/sdtp.11845
YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process [J]. Nat. Commun., 2016, 7(1): 11573-1-7. doi: 10.1038/ncomms11573http://dx.doi.org/10.1038/ncomms11573
KWON J H. RGB color patterning for AMOLED TVs [J]. Inf. Disp., 2013, 29(2): 12-15. doi: 10.1002/j.2637-496x.2013.tb00592.xhttp://dx.doi.org/10.1002/j.2637-496x.2013.tb00592.x
LEE S H, PARK H L, LEE S H, et al. Systematic investigation of subtractive contact patterning for high-resolution organic electronic devices [J]. ACS Appl. Electron. Mater., 2023, 5(4): 2197-2202. doi: 10.1021/acsaelm.3c00080http://dx.doi.org/10.1021/acsaelm.3c00080
LIH J J, CHAO C I, LEE C C. Novel pixel design for high-resolution AMOLED displays with a shadow mask [J]. J. Soc. Inf. Disp., 2007, 15(1): 3-7. doi: 10.1889/1.2451539http://dx.doi.org/10.1889/1.2451539
KANG C M, LEE H. Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications [J]. J. Inf. Disp., 2022, 23(1): 19-32. doi: 10.1080/15980316.2021.1917461http://dx.doi.org/10.1080/15980316.2021.1917461
KODEN M. OLED Display and Lighting [M]. Chichester: John Wiley & Sons, 2016. doi: 10.1002/9781119040477http://dx.doi.org/10.1002/9781119040477
ZHAO D J, HUANG W, DONG L W, et al. 67-2: 5.5 inch full screen flexible high-resolution OLED display fabricated by ink jet printing method [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1): 945-948. doi: 10.1002/sdtp.13081http://dx.doi.org/10.1002/sdtp.13081
SHAO L Q, DONG T, LIANG J S, et al. P-190: the development of 403 ppi real RGB printing AMOLED [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1): 1943-1945. doi: 10.1002/sdtp.13346http://dx.doi.org/10.1002/sdtp.13346
LIU H M, XU W, TAN W Y, et al. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer [J]. J. Colloid Interface Sci., 2016, 465: 106-111. doi: 10.1016/j.jcis.2015.11.067http://dx.doi.org/10.1016/j.jcis.2015.11.067
XIA C J, ADVINCULA R C, BABA A, et al. Electrochemical patterning of a polyfluorene precursor polymer from a microcontact printed (μCP) monolayer [J]. Chem. Mater., 2004, 16(15): 2852-2856. doi: 10.1021/cm049544ghttp://dx.doi.org/10.1021/cm049544g
LU G W, SHI G Q. Electrochemical polymerization of pyrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer [J]. J. Electroanal. Chem., 2006, 586(2): 154-160. doi: 10.1016/j.jelechem.2005.10.020http://dx.doi.org/10.1016/j.jelechem.2005.10.020
WANG R, ZHANG D L, XIONG Y, et al. TFT-directed electroplating of RGB luminescent films without a vacuum or mask toward a full-color AMOLED pixel matrix [J]. ACS Appl. Mater. Interfaces, 2018, 10(21): 17519-17525. doi: 10.1021/acsami.8b04487http://dx.doi.org/10.1021/acsami.8b04487
CHOI Y M, SHIN H Y, SON J, et al. Two-color pixel patterning for high-resolution organic light-emitting displays using photolithography [J]. Micromachines, 2020, 11(7): 650-1-12. doi: 10.3390/mi11070650http://dx.doi.org/10.3390/mi11070650
SON J, SHIN H Y, CHOI Y M, et al. Descumming fluorous solution for photolithographic patterning of organic light-emitting diodes [J]. Microelectron. Eng., 2020, 227: 111324-1-7. doi: 10.1016/j.mee.2020.111324http://dx.doi.org/10.1016/j.mee.2020.111324
MALINOWSKI P E, KE T H, NAKAMURA A, et al. High resolution photolithography for direct view active matrix organic light-emitting diode augmented reality displays [J]. J. Soc. Inf. Disp., 2018, 26(3): 128-136. doi: 10.1002/jsid.643http://dx.doi.org/10.1002/jsid.643
RAVI V K, SAIKIA S, YADAV S, et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability [J]. ACS Energy Lett., 2020, 5(6): 1794-1796. doi: 10.1021/acsenergylett.0c00858http://dx.doi.org/10.1021/acsenergylett.0c00858
PANFIL Y E, ODED M, BANIN U. Colloidal quantum nanostructures: emerging materials for display applications [J]. Angew. Chem. Int. Ed., 2018, 57(16): 4274-4295. doi: 10.1002/anie.201708510http://dx.doi.org/10.1002/anie.201708510
KIM B H, ONSES M S, LIM J B, et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes [J]. Nano Lett., 2015, 15(2): 969-973. doi: 10.1021/nl503779ehttp://dx.doi.org/10.1021/nl503779e
HO S J, HSU H C, YEH C W, et al. Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays [J]. ACS Appl. Mater. Interfaces, 2020, 12(29): 33346-33351. doi: 10.1021/acsami.0c05646http://dx.doi.org/10.1021/acsami.0c05646
WANG H W, ZHANG Y M, LIU Y, et al. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing [J]. Nanoscale Adv., 2023, 5(4): 1183-1189. doi: 10.1039/d2na00862ahttp://dx.doi.org/10.1039/d2na00862a
孙加振, 邝旻翾, 宋延林. 喷墨打印中“咖啡环”效应的调控及应用 [J]. 化学进展, 2015, 27(8): 979-985. doi: 10.7536/PC150230http://dx.doi.org/10.7536/PC150230
SUN J Z, KUANG M X, SONG Y L. Control and application of “coffee ring” effect in inkjet printing [J]. Progress Chem., 2015, 27(8): 979-985. (in Chinese). doi: 10.7536/PC150230http://dx.doi.org/10.7536/PC150230
MAMPALLIL D, ERAL H B. A review on suppression and utilization of the coffee-ring effect [J]. Adv. Colloid Interface Sci., 2018, 252: 38-54. doi: 10.1016/j.cis.2017.12.008http://dx.doi.org/10.1016/j.cis.2017.12.008
PARK J S, KYHM J, KIM H H, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display [J]. Nano Lett., 2016, 16(11): 6946-6953. doi: 10.1021/acs.nanolett.6b03007http://dx.doi.org/10.1021/acs.nanolett.6b03007
WANG Y Y, FEDIN I, ZHANG H, et al. Direct optical lithography of functional inorganic nanomaterials [J]. Science, 2017, 357(6349): 385-388. doi: 10.1126/science.aan2958http://dx.doi.org/10.1126/science.aan2958
YANG J, HAHM D, KIM K, et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking [J]. Nat. Commun., 2020, 11(1): 2874-1-9. doi: 10.1038/s41467-020-16652-4http://dx.doi.org/10.1038/s41467-020-16652-4
KO T, KUMAR S, SHIN S, et al. Colloidal quantum dot nanopatterning with E-beam lithography on flexible PET [C]. Proceedings of the 2022 Conference on Lasers and Electro⁃Optics Pacific Rim, Sapporo, 2022. doi: 10.1364/cleopr.2022.cfa8g_05http://dx.doi.org/10.1364/cleopr.2022.cfa8g_05
SONG K W, COSTI R, BULOVIĆ V. Electrophoretic deposition of CdSe/ZnS quantum dots for light-emitting devices [J]. Adv. Mater., 2013, 25(10): 1420-1423. doi: 10.1002/adma.201203079http://dx.doi.org/10.1002/adma.201203079
ZHAO J Y, CHEN L X, LI D Z, et al. Large-area patterning of full-color quantum dot arrays beyond 1 000 pixels per inch by selective electrophoretic deposition [J]. Nat. Commun., 2021, 12(1): 4603-1-8. doi: 10.1038/s41467-021-24931-xhttp://dx.doi.org/10.1038/s41467-021-24931-x
CHOI M K, YANG J, KANG K, et al. Wearable red⁃green⁃blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing [J]. Nat. Commun., 2015, 6(1): 7149-1-8. doi: 10.1038/ncomms8149http://dx.doi.org/10.1038/ncomms8149
SUNG S H, YOON H, LIM J, et al. Reusable stamps for printing Sub-100 nm patterns of functional nanoparticles [J]. Small, 2012, 8(6): 826-831. doi: 10.1002/smll.201101668http://dx.doi.org/10.1002/smll.201101668
KIM T H, CHUNG D Y, KU J Y, et al. Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes [J]. Nat. Commun., 2013, 4(1): 2637-1-12. doi: 10.1038/ncomms3637http://dx.doi.org/10.1038/ncomms3637
WANG S W, HONG K B, TSAI Y L, et al. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography [J]. Sci. Rep., 2017, 7(1): 42962-1-7. doi: 10.1038/srep42962http://dx.doi.org/10.1038/srep42962
CHEN C J, CHEN H C, LIAO J H, et al. Fabrication and characterization of active-matrix 960×540 blue GaN-based micro-LED display [J]. IEEE J. Quantum Electron., 2019, 55(2): 3300106-1-6. doi: 10.1109/jqe.2019.2900540http://dx.doi.org/10.1109/jqe.2019.2900540
LIU X H, WU Y P, MALHOTRA Y, et al. Submicron full-color LED pixels for microdisplays and micro-LED main displays [J]. J. Soc. Inf. Disp., 2020, 28(5): 410-417. doi: 10.1002/jsid.899http://dx.doi.org/10.1002/jsid.899
GENSLER M, BOEFFEL C, KRÖPKE S, et al. 82-5: Late⁃news paper: high-resolution printing for future processing of RGB OLED displays [J]. SID Symp. Dig. Tech. Pap., 2018, 49(1): 1117-1119. doi: 10.1002/sdtp.12115http://dx.doi.org/10.1002/sdtp.12115
JANG W, LEE M, KWEON H, et al. Tetrabranched photo-crosslinker enables micrometer-scale patterning of light-emitting super yellow for high-resolution OLEDs [J]. ACS Photonics, 2021, 8(8): 2519-2528. doi: 10.1021/acsphotonics.1c00768http://dx.doi.org/10.1021/acsphotonics.1c00768
YOKOYAMA K, HIRASA S, MIYAIRI N, et al. Ultra-high-resolution 1 058-ppi OLED displays with 2.78-in size using CAAC-IGZO FETs with tandem OLED device and single OLED device [J]. J. Soc. Inf. Disp., 2016, 24(3): 159-167. doi: 10.1002/jsid.424http://dx.doi.org/10.1002/jsid.424
LI J H, XU L S, TANG C W, et al. High-resolution organic light-emitting diodes patterned via contact printing [J]. ACS Appl. Mater. Interfaces, 2016, 8(26): 16809-16815. doi: 10.1021/acsami.6b05286http://dx.doi.org/10.1021/acsami.6b05286
LIU S F, HOU Z W, LIN L H, et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding [J]. Science, 2022, 377(6610): 1112-1116. doi: 10.1126/science.abo5345http://dx.doi.org/10.1126/science.abo5345
HAHM D, LIM J, KIM H, et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface [J]. Nat. Nanotechnol., 2022, 17(9): 952-958. doi: 10.1038/s41565-022-01182-5http://dx.doi.org/10.1038/s41565-022-01182-5
TAMBORRA M, STRICCOLI M, CURRI M L, et al. Nanocrystal-based luminescent composites for nanoimprinting lithography [J]. Small, 2007, 3(5): 822-828. doi: 10.1002/smll.200600690http://dx.doi.org/10.1002/smll.200600690
FURASOVA A D, IVANOVSKI V, YAKOVLEV A V, et al. Inkjet fabrication of highly efficient luminescent Eu-doped ZrO2 nanostructures [J]. Nanoscale, 2017, 9(35): 13069-13078. doi: 10.1039/c7nr03175khttp://dx.doi.org/10.1039/c7nr03175k
0
Views
246
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution