浏览全部资源
扫码关注微信
1.北京大学 化学与分子工程学院, 稀土材料化学及应用国家重点实验室, 北京大学⁃香港大学稀土材料与生物无机化学联合实验室, 北京分子科学中心, 北京 100871
2.兰州大学 化学化工学院, 甘肃 兰州 730000
Published:05 July 2023,
Received:15 May 2023,
Revised:29 May 2023,
移动端阅览
张格,杨向飞,王晓勇等.稀土纳米晶的上转换发光调控研究进展[J].发光学报,2023,44(07):1149-1166.
ZHANG Ge,YANG Xiangfei,WANG Xiaoyong,et al.Research Progress on Upconversion Emission Modulation of Rare Earth Nanocrystals[J].Chinese Journal of Luminescence,2023,44(07):1149-1166.
张格,杨向飞,王晓勇等.稀土纳米晶的上转换发光调控研究进展[J].发光学报,2023,44(07):1149-1166. DOI: 10.37188/CJL.20230131.
ZHANG Ge,YANG Xiangfei,WANG Xiaoyong,et al.Research Progress on Upconversion Emission Modulation of Rare Earth Nanocrystals[J].Chinese Journal of Luminescence,2023,44(07):1149-1166. DOI: 10.37188/CJL.20230131.
近年来,将近红外光转换为短波长的可见或近红外光的稀土纳米晶上转换发光研究吸引了生物成像、纳米温度传感、太阳能电池等领域研究者的广泛关注。面向多领域的应用需求,稀土纳米晶上转换发光需提高其发光强度、发光波长以及激发波长的选择性。本文综述了纳米尺度上,通过组成、结构以及核壳结构的设计,在理解上转换发光过程的能量传递路径和上转换发光过程的基础上,提高对上转换发光的颜色、各跃迁的比例以及发光强度、发光寿命等调控的研究进展。此外,还关注了纳米晶与贵金属表面电场、表面有机分子以及环境温度的耦合在提高辐射跃迁几率、减少无辐射能量损失等方面提高其上转换发光强度的研究发展趋势。
In recent years, upconversion emission of rare earth nanocrystals, which can convert near-infrared light to short-wavelength visible or near-infrared one, has attracted extensive attention from researchers in the fields of biological imaging, nanothermometer, solar cells, and so on. For multi-field applications, upconversion emission of rare earth nanocrystals needs to improve the luminescent intensity, luminescent wavelength selectivity, and excitation wavelength. In this paper, we briefly review the research progress in improving the color, luminescence intensity, and luminescence lifetime of upconversion emission on the basis of understanding the energy transfer pathway and upconversion emission process through the design of composition, structure and core-shell structure at the nanoscale. In addition, the coupling between nanocrystals and precious metal surface electromagnetic fields, surface organic molecules and ambient temperature is also concerned. The research trend of increasing the intensity of rare earth upconversion luminescence in terms of increasing radiation transition probability and reducing non-radiation quenching is also mentioned.
稀土纳米晶上转换发光核壳结构
rare earth nanocrystalsupconversion emissioncore/shell structure
DIEKE G H. Spectra and Energy Levels of Rare Earth Ions in Crystals [M]. New York: John Wiley & Sons, 1968. doi: 10.1088/0031-9112/20/12/010http://dx.doi.org/10.1088/0031-9112/20/12/010
KAMINSKII A A. Achievements in the field of physics and spectroscopy of activated laser crystals [J]. Phys. Status Solidi (A), 1985, 87(1): 11-57. doi: 10.1002/pssa.2210870102http://dx.doi.org/10.1002/pssa.2210870102
BÜNZLI J C G. Lanthanide luminescence for biomedical analyses and imaging [J]. Chem. Rev., 2010, 110(5): 2729-2755. doi: 10.1021/cr900362ehttp://dx.doi.org/10.1021/cr900362e
AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104(1): 139-174. doi: 10.1021/cr020357ghttp://dx.doi.org/10.1021/cr020357g
BLOEMBERGEN N. Solid state infrared quantum counters [J]. Phys. Rev. Lett., 1959, 2(3): 84-85. doi: 10.1103/physrevlett.2.84http://dx.doi.org/10.1103/physrevlett.2.84
AUZEL F. Compteur quantique par transfert d'énergie entre deux ions de terres rares dans un tungstate mixte et dans un verre [J]. C. R. Acad. Sci. Paris B, 1966, 262: 1016-1019.
AUZEL F. History of upconversion discovery and its evolution [J]. J. Lumin., 2020, 223: 116900-1-7. doi: 10.1016/j.jlumin.2019.116900http://dx.doi.org/10.1016/j.jlumin.2019.116900
OVSYANKIN V V, FEOFILOV P P. Mechanism of summation of electronic excitations in activated crystals [J]. J. Exp. Theor. Phys. Lett., 1966, 3: 322.
AUZEL F, PECILE D. Comparison and efficiency of materials for summation of photons assisted by energy transfer [J]. J. Lumin., 1973, 8(1): 32-43. doi: 10.1016/0022-2313(73)90033-1http://dx.doi.org/10.1016/0022-2313(73)90033-1
AUZEL F, PECILE D, MORIN D. Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion [J]. J. Electrochem. Soc., 1975, 122(1): 101-107. doi: 10.1149/1.2134132http://dx.doi.org/10.1149/1.2134132
WANG H Q, BATENTSCHUK M, OSVET A, et al. Rare-earth ion doped up-conversion materials for photovoltaic applications [J]. Adv. Mater., 2011, 23(22-23): 2675-2680. doi: 10.1002/adma.201100511http://dx.doi.org/10.1002/adma.201100511
HUANG X Y, HAN S Y, HUANG W, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters [J]. Chem. Soc. Rev., 2013, 42(1): 173-201. doi: 10.1039/c2cs35288ehttp://dx.doi.org/10.1039/c2cs35288e
ZHOU J, LIU Z, LI F Y. Upconversion nanophosphors for small-animal imaging [J]. Chem. Soc. Rev., 2012, 41(3): 1323-1349. doi: 10.1039/c1cs15187hhttp://dx.doi.org/10.1039/c1cs15187h
WANG F, BANERJEE D, LIU Y S, et al. Upconversion nanoparticles in biological labeling, imaging, and therapy [J]. Analyst, 2010, 135(8): 1839-1854. doi: 10.1039/c0an00144ahttp://dx.doi.org/10.1039/c0an00144a
CAPOBIANCO J A, VETRONE F, D'ALESIO T, et al. Optical spectroscopy of nanocrystalline cubic Y2O3∶Er3+ obtained by combustion synthesis [J]. Phys. Chem. Chem. Phys., 2000, 2(14): 3203-2307. doi: 10.1039/b003031ghttp://dx.doi.org/10.1039/b003031g
CHIVIAN J S, CASE W E, EDEN D D. The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters [J]. Appl. Phys. Lett., 1979, 35(2): 124-125. doi: 10.1063/1.91044http://dx.doi.org/10.1063/1.91044
WANG F, DENG R R, WANG J, et al. Tuning upconversion through energy migration in core-shell nanoparticles [J]. Nat. Mater., 2011, 10(12): 968-973. doi: 10.1038/nmat3149http://dx.doi.org/10.1038/nmat3149
MAI H X, ZHANG Y W, SUN L D, et al. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4∶Yb, Er core and core/shell-structured nanocrystals [J]. J. Phys. Chem. C, 2007, 111(37): 13721-13729. doi: 10.1021/jp073920dhttp://dx.doi.org/10.1021/jp073920d
WEI W, ZHANG Y, CHEN R, et al. Cross relaxation induced pure red upconversion in activator-and sensitizer-rich lanthanide nanoparticles [J]. Chem. Mater., 2014, 26(18): 5183-5186. doi: 10.1021/cm5022382http://dx.doi.org/10.1021/cm5022382
QIU H L, CHEN G Y, FAN R W, et al. Intense ultraviolet upconversion emission from water-dispersed colloidal YF3∶Yb3+/Tm3+ rhombic nanodisks [J]. Nanoscale, 2014, 6(2): 753-757. doi: 10.1039/c3nr04617fhttp://dx.doi.org/10.1039/c3nr04617f
WANG M, MI C C, ZHANG Y X, et al. NIR-responsive silica-coated NaYbF4∶Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells [J]. J. Phys. Chem. C, 2009, 113(44): 19021-19027. doi: 10.1021/jp906394zhttp://dx.doi.org/10.1021/jp906394z
CHEN G Y, LIU H C, SOMESFALEAN G, et al. Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions [J]. Nanotechnology, 2009, 20(38): 385704-1-6. doi: 10.1088/0957-4484/20/38/385704http://dx.doi.org/10.1088/0957-4484/20/38/385704
CHAN E M, HAN G, GOLDBERG J D, et al. Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission [J]. Nano Lett., 2012, 12(7): 3839-3845. doi: 10.1021/nl3017994http://dx.doi.org/10.1021/nl3017994
WANG J, WANG F, WANG C, et al. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals [J]. Angew. Chem. Intl. Ed., 2011, 50(44): 10369-10372. doi: 10.1002/anie.201104192http://dx.doi.org/10.1002/anie.201104192
ZHAO J B, JIN D Y, SCHARTNER E P, et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence [J]. Nat. Nanotechnol., 2013, 8(10): 729-734. doi: 10.1038/nnano.2013.171http://dx.doi.org/10.1038/nnano.2013.171
YI G S, CHOW G M. Water-soluble NaYF4∶Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem. Mater., 2007, 19(3): 341-343. doi: 10.1021/cm062447yhttp://dx.doi.org/10.1021/cm062447y
HAN S Y, DENG R R, XIE X J, et al. Enhancing luminescence in lanthanide-doped upconversion nanoparticles [J]. Angew. Chem. Int. Ed., 2014, 53(44): 11702-11715. doi: 10.1002/anie.201403408http://dx.doi.org/10.1002/anie.201403408
WANG F, WANG J, LIU X G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles [J]. Angew. Chem. Int. Ed., 2010, 49(41): 7456-7460. doi: 10.1002/anie.201003959http://dx.doi.org/10.1002/anie.201003959
JOHNSON N J J, KORINEK A, DONG C H, et al. Self-focusing by ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals [J]. J. Amer. Chem. Soc., 2012, 134(27): 11068-11071. doi: 10.1021/ja302717uhttp://dx.doi.org/10.1021/ja302717u
ZHANG F, CHE R C, LI X M, et al. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties [J]. Nano Lett., 2012, 12(6): 2852-2858. doi: 10.1021/nl300421nhttp://dx.doi.org/10.1021/nl300421n
WANG Y F, SUN L D, XIAO J W, et al. Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage [J]. Chem. Eur. J., 2012, 18(18): 5558-5564. doi: 10.1002/chem.201103485http://dx.doi.org/10.1002/chem.201103485
DONG H, SUN L D, LI L D, et al. Selective cation exchange enabled growth of lanthanide core/shell nanoparticles with dissimilar structure [J]. J. Am. Chem. Soc., 2017, 139(51): 18492-18495. doi: 10.1021/jacs.7b11836http://dx.doi.org/10.1021/jacs.7b11836
WANG F, LIU X G. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles [J]. J. Am. Chem. Soc., 2008, 130(17): 5642-5643. doi: 10.1021/ja800868ahttp://dx.doi.org/10.1021/ja800868a
CHEN G Y, SHEN F, OHULCHANSKYY T Y, et al. (α-NaYbF4∶Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging [J]. ACS Nano, 2012, 6(9): 8280-8287. doi: 10.1021/nn302972rhttp://dx.doi.org/10.1021/nn302972r
YIN A X, ZHANG Y W, SUN L D, et al. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4∶Yb,Tm nanocrystals [J]. Nanosacle, 2010, 2(6): 953-959. doi: 10.1039/b9nr00397ehttp://dx.doi.org/10.1039/b9nr00397e
WANG J, DENG R R, MACDONALD M A, et al. Enhancing multiphoton upconversion through energy clustering at sublattice level [J]. Nat. Mater., 2014, 13(2): 157-162. doi: 10.1038/nmat3804http://dx.doi.org/10.1038/nmat3804
CHEN G Y, LIU H C, LIANG H J, et al. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ Ions [J]. J. Phys. Chem. C, 2008, 112(31): 12030-12036. doi: 10.1021/jp804064ghttp://dx.doi.org/10.1021/jp804064g
FAN S H, GAO G J, SUN S Y, et al. Absolute up-conversion quantum efficiency reaching 4% in β-NaYF4∶Yb3+,Er3+ micro-cylinders achieved by Li+/Na+ ion-exchange [J]. J. Mater. Chem. C, 2018, 6(20): 5453-5461. doi: 10.1039/c8tc01806ehttp://dx.doi.org/10.1039/c8tc01806e
LIANG H J, ZHENG Y D, CHEN G Y, et al. Enhancement of upconversion luminescence of Y2O3∶Er3+ nanocrystals by codoping Li+⁃Zn2+ [J]. J. Alloys Compd., 2011, 509(2): 409-413. doi: 10.1016/j.jallcom.2010.09.044http://dx.doi.org/10.1016/j.jallcom.2010.09.044
JIANG L, XIAO S, YANG X, et al. Enhancement of up-conversion luminescence in Zn2SiO4∶Yb3+,Er3+ by co-doping with Li+ or Bi3+ [J]. Appl. Phys. B, 2012, 107(2): 477-481. doi: 10.1007/s00340-012-4986-9http://dx.doi.org/10.1007/s00340-012-4986-9
NIU N, HE F, GAI S L, et al. Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4∶Yb3+,Ln3+,Bi3+ (Ln3+ = Er3+, Tm3+, Ho3+) and its enhanced UC luminescence [J]. J. Mater. Chem., 2012, 22(40): 21613-21623. doi: 10.1039/c2jm34653bhttp://dx.doi.org/10.1039/c2jm34653b
RAMASAMY P, CHANDRA P, RHEE S W, et al. Enhanced upconversion luminescence in NaGdF4∶Yb, Er nanocrystals by Fe3+ doping and their application in bioimaging [J]. Nanoscale, 2013, 5(18): 8711-8717. doi: 10.1039/c3nr01608khttp://dx.doi.org/10.1039/c3nr01608k
SON D H, HUGHES S M, YIN Y D, et al. Cation exchange reactions in ionic nanocrystals [J]. Science, 2004, 306(55698): 1009-1012. doi: 10.1126/science.1103755http://dx.doi.org/10.1126/science.1103755
POWELL A E, HODGES J M, SCHAAK R E. Preserving both anion and cation sublattice features during a nanocrystal cation-exchange reaction: synthesis of metastable wurtzite-type CoS and MnS [J]. J. Am. Chem. Soc., 2016, 138(2): 471-474. doi: 10.1021/jacs.5b10624http://dx.doi.org/10.1021/jacs.5b10624
CHAKRABORTY P, JIN Y, BARROWS C J, et al. Kinetics of isovalent (Cd2+) and aliovalent (In3+) cation exchange in Cd1-xMnxSe nanocrystals [J]. J. Am. Chem. Soc., 2016, 138(39): 12885-12893. doi: 10.1021/jacs.6b05949http://dx.doi.org/10.1021/jacs.6b05949
DE TRIZIO L, MANNA L. Forging colloidal nanostructures via cation exchange reactions [J]. Chem. Rev., 2016, 116(18): 10852-10887. doi: 10.1021/acs.chemrev.5b00739http://dx.doi.org/10.1021/acs.chemrev.5b00739
ZHOU Z G, YU M X, YANG H, et al. FRET-based sensor for imaging chromium (Ⅲ) in living cells [J]. Chem. Commun., 2008(29): 3387-3389. doi: 10.1039/b801503ahttp://dx.doi.org/10.1039/b801503a
ANDREWS D L. A unified theory of radiative and radiationless molecular energy transfer [J]. Chem. Phys., 1989, 135(2): 195-201. doi: 10.1016/0301-0104(89)87019-3http://dx.doi.org/10.1016/0301-0104(89)87019-3
SELVIN P R, HEARST J E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer [J]. Proc. Natl. Acad. Sci. USA, 1994, 91(21): 10024-10028. doi: 10.1073/pnas.91.21.10024http://dx.doi.org/10.1073/pnas.91.21.10024
JARES-ERIJMAN E A, JOVIN T M. FRET imaging [J]. Nat. Biotechnol., 2003, 21(11): 1387-1395. doi: 10.1038/nbt896http://dx.doi.org/10.1038/nbt896
ARON A T, LOEHR M O, BOGENA J, et al. An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells [J]. J. Am. Chem. Soc., 2016, 138(43): 14338-14346. doi: 10.1021/jacs.6b08016http://dx.doi.org/10.1021/jacs.6b08016
DAY R N, TAO W, DUNN K W. A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy [J]. Nat. Protocols, 2016, 11(11): 2066-2080. doi: 10.1038/nprot.2016.121http://dx.doi.org/10.1038/nprot.2016.121
ZOU W Q, VISSER C, MADURO J A, et al. Broadband dye-sensitized upconversion of near-infrared light [J]. Nat. Photonics, 2012, 6(8): 560-564. doi: 10.1038/nphoton.2012.158http://dx.doi.org/10.1038/nphoton.2012.158
WU X, LEE H, BILSEL O, et al. Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging [J]. Nanoscale, 2015, 7(44): 18424-18428. doi: 10.1039/c5nr05437khttp://dx.doi.org/10.1039/c5nr05437k
WU X, ZHANG Y W, TAKLE K, et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications [J]. ACS Nano, 2016, 10(1): 1060-1066. doi: 10.1021/acsnano.5b06383http://dx.doi.org/10.1021/acsnano.5b06383
YIN D G, LIU Y M, TANG J X, et al. Huge enhancement of upconversion luminescence by broadband dye sensitization of core/shell nanocrystals [J]. Dalton Trans., 2016, 45(34): 13392-13398. doi: 10.1039/c6dt01187jhttp://dx.doi.org/10.1039/c6dt01187j
CHEN G Y, OHULCHANSKYY T Y, KUMAR R, et al. Ultrasmall monodisperse NaYF4∶Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. ACS Nano, 2010, 4(6): 3163-3168. doi: 10.1021/nn100457jhttp://dx.doi.org/10.1021/nn100457j
WEI W, CHEN G Y, BAEV A, et al. Alleviating luminescence concentration quenching in upconversion nanoparticles through organic dye sensitization [J]. J. Am. Chem. Soc., 2016, 138(46): 15130-15133. doi: 10.1021/jacs.6b09474http://dx.doi.org/10.1021/jacs.6b09474
SHAO W, CHEN G Y, KUZMIN A, et al. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window [J]. J. Am. Chem. Soc., 2016, 138(50): 16192-16195. doi: 10.1021/jacs.6b08973http://dx.doi.org/10.1021/jacs.6b08973
GARFIELD D J, BORYS N J, HAMED S M, et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission [J]. Nat. Photonics, 2018, 12(7): 402-407. doi: 10.1038/s41566-018-0156-xhttp://dx.doi.org/10.1038/s41566-018-0156-x
WEN S H, ZHOU J J, SCHUCK P J, et al. Future and challenges for hybrid upconversion nanosystems [J]. Nat. Photonics, 2019, 13(12): 828-838. doi: 10.1038/s41566-019-0528-xhttp://dx.doi.org/10.1038/s41566-019-0528-x
HENS Z. Economical routes to colloidal nanocrystals [J]. Science, 2015, 348(6240): 1211-1212. doi: 10.1126/science.aab0866http://dx.doi.org/10.1126/science.aab0866
MARTÍN-RODRÍGUEZ R, GEITENBEEK R, MEIJERINK A. Incorporation and luminescence of Yb3+ in CdSe nanocrystals [J]. J. Am. Chem. Soc., 2013, 135(37): 13668-13671. doi: 10.1021/ja4077414http://dx.doi.org/10.1021/ja4077414
CHAKRABORTY A, DEBNATH G H, AHIR M, et al. Towards the realization of luminescence from visible emitting trivalent lanthanides (Sm, Eu, Tb, Dy) in polar zinc sulfide nanoparticles: evaluation of in vitro cytotoxicity [J]. RSC Adv., 2016, 6(49): 43304-43315. doi: 10.1039/c6ra03401bhttp://dx.doi.org/10.1039/c6ra03401b
DONG H, SUN L D, WANG Y F, et al. Photon upconversion in Yb3+⁃Tb3+ and Yb3+⁃Eu3+ activated core/shell nanoparticles with dual-band excitation [J]. J. Mater. Chem. C, 2016, 4(19): 4186-4192. doi: 10.1039/c6tc00413jhttp://dx.doi.org/10.1039/c6tc00413j
CHEN G Y, OHULCHANSKYY T Y, KACHYNSKI A, et al. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4∶Er3+ nanocrystals under excitation at 1 490 nm [J]. ACS Nano, 2011, 5(6): 4981-4986. doi: 10.1021/nn201083jhttp://dx.doi.org/10.1021/nn201083j
ZHAN Q Q, QIAN J, LIANG H J, et al. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation [J]. ACS Nano, 2011, 5(5): 3744-3757. doi: 10.1021/nn200110jhttp://dx.doi.org/10.1021/nn200110j
WANG Y F, LIU G Y, SUN L D, et al. Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect [J]. ACS Nano, 2013, 7(8): 7200-7206. doi: 10.1021/nn402601dhttp://dx.doi.org/10.1021/nn402601d
LAI J P, ZHANG Y X, PASQUALE N, et al. An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two-way photoswitching [J]. Angew. Chem. Int. Ed., 2014, 53(52): 14419-14423. doi: 10.1002/anie.201408219http://dx.doi.org/10.1002/anie.201408219
LI X M, GUO Z Z, ZHAO T C, et al. Filtration shell mediated power density independent orthogonal excitations⁃emissions upconversion luminescence [J]. Angew. Chem. Int. Ed., 2016, 55(7): 2464-2469. doi: 10.1002/anie.201510609http://dx.doi.org/10.1002/anie.201510609
DONG H, SUN L D, FENG W, et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence [J]. ASC Nano, 2017, 11(3): 3289-3297. doi: 10.1021/acsnano.7b00559http://dx.doi.org/10.1021/acsnano.7b00559
CHENG X W, GE H, WEI Y, et al. Design for brighter photon upconversion emissions via energy level overlap of lanthanide ions [J]. ACS Nano, 2018, 12(11): 10992-10999. doi: 10.1021/acsnano.8b04988http://dx.doi.org/10.1021/acsnano.8b04988
DREXHAGE K H. Influence of a dielectric interface on fluorescence decay time [J]. J. Lumin., 1970, 102: 693-701. doi: 10.1016/0022-2313(70)90082-7http://dx.doi.org/10.1016/0022-2313(70)90082-7
KULAKOVICH O, STREKAL N, YAROSHEVICH A, et al. Enhanced luminescence of CdSe quantum dots on gold colloids [J]. Nano Lett., 2002, 2(12): 1449-1452. doi: 10.1021/nl025819khttp://dx.doi.org/10.1021/nl025819k
ASLAN K, GEDDES C D. Metal⁃enhanced fluorescence: progress towards a unified plasmon⁃fluorophore description [M]. GEDDES C D. Metal⁃enhanced Fluorescence. Hoboken: John Wiley & Sons, 2010. doi: 10.1002/9780470642795.ch1http://dx.doi.org/10.1002/9780470642795.ch1
DENG W, XIE F, BALTAR H T M C M, et al. Metal-enhanced fluorescence in the life sciences: here, now and beyond [J]. Phys. Chem. Chem. Phys., 2013, 15(38): 15695-15708. doi: 10.1039/c3cp50206fhttp://dx.doi.org/10.1039/c3cp50206f
ASLAN K, GRYCZYNSKI I, MALICKA J, et al. Metal-enhanced fluorescence: an emerging tool in biotechnology [J]. Curr. Opin. Biotechnol., 2005, 16(1): 55-62. doi: 10.1016/j.copbio.2005.01.001http://dx.doi.org/10.1016/j.copbio.2005.01.001
SABOKTAKIN M, YE X C, OH S J, et al. Metal-enhanced upconversion luminescence tunable through metal nanoparticle⁃nanophosphor separation [J]. ACS Nano, 2012, 6(10): 8758-8766. doi: 10.1021/nn302466rhttp://dx.doi.org/10.1021/nn302466r
SCHIETINGER S, AICHELE T, WANG H Q, et al. Plasmon-enhanced upconversion in single NaYF4∶Yb3+/Er3+ codoped nanocrystals [J]. Nano Lett., 2010, 10(1): 134-138. doi: 10.1021/nl903046rhttp://dx.doi.org/10.1021/nl903046r
AISAKA T, FUJII M, HAYASHI S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films [J]. Appl. Phys. Lett., 2008, 92(13): 132105-1-3. doi: 10.1063/1.2896303http://dx.doi.org/10.1063/1.2896303
FENG W, SUN L D, YAN C H. Ag nanowires enhanced upconversion emission of NaYF4∶Yb,Er nanocrystals via a direct assembly method [J]. Chem. Commun., 2009(29): 4393-4395. doi: 10.1039/b909164ehttp://dx.doi.org/10.1039/b909164e
WU Y M, XU J H, POH E T, et al. Upconversion superburst with sub-2 μs lifetime [J]. Nat. Nanotechnol., 2019, 14(12): 1110-1115. doi: 10.1038/s41565-019-0560-5http://dx.doi.org/10.1038/s41565-019-0560-5
KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal-quenching phosphor [J]. Nat. Mater., 2017, 16(5): 543-550. doi: 10.1038/nmat4843http://dx.doi.org/10.1038/nmat4843
ZHENG K Z, LIU Z Y, LV C J, et al. Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+⁃Gd3+ codoped NaLuF4 microcrystals [J]. J. Mater. Chem. C, 2013, 1(35): 5502-5507. doi: 10.1039/c3tc30763hhttp://dx.doi.org/10.1039/c3tc30763h
RAFIEI MIANDASHTI A, KORDESCH M E, RICHARDSON H H. Effect of temperature and gold nanoparticle interaction on the lifetime and luminescence of NaYF4∶Yb3+/Er3+ upconverting nanoparticles [J]. ACS Photonics, 2017, 4(7): 1864-1869. doi: 10.1021/acsphotonics.7b00512http://dx.doi.org/10.1021/acsphotonics.7b00512
ZHOU J J, WEN S H, LIAO J Y, et al. Activation of the surface dark-layer to enhance upconversion in a thermal field [J]. Nat. Photonics, 2018, 12(3): 154-158. doi: 10.1038/s41566-018-0108-5http://dx.doi.org/10.1038/s41566-018-0108-5
LI D H, WANG W R, LIU X F, et al. Discovery of non-reversible thermally enhanced upconversion luminescence behavior in rare-earth doped nanoparticles [J]. J. Mater. Chem. C, 2019, 7(15): 4336-4343. doi: 10.1039/c9tc01009bhttp://dx.doi.org/10.1039/c9tc01009b
ZOU H, YANG X Q, CHEN B, et al. Thermal enhancement of upconversion by negative lattice expansion in orthorhombic Yb2W3O12 [J]. Angew. Chem. Int. Ed., 2019, 58(48): 17255-17259. doi: 10.1002/anie.201910277http://dx.doi.org/10.1002/anie.201910277
KING S M, CLAIRE S, TEIXEIRA R I, et al. Iridium nanoparticles for multichannel luminescence lifetime imaging, mapping localization in live cancer cells [J]. J. Am. Chem. Soc., 2018, 140(32): 10242-10249. doi: 10.1021/jacs.8b05105http://dx.doi.org/10.1021/jacs.8b05105
DATTA R, HEASTER T M, SHARICK J T, et al. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications [J]. J. Biomed. Opt., 2020, 25(7): 071203-1-44. doi: 10.1117/1.jbo.25.7.071203http://dx.doi.org/10.1117/1.jbo.25.7.071203
HAN X X, SONG E H, ZHOU B, et al. Color tunable upconversion luminescent perovskite fluoride with long-/short-lived emissions toward multiple anti-counterfeiting [J]. J. Mater. Chem. C, 2019, 7(27): 8226-8235. doi: 10.1039/c9tc02171jhttp://dx.doi.org/10.1039/c9tc02171j
YANG T S, SUN Y, LIU Q, et al. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species [J]. Biomaterials, 2012, 33(14): 3733-3742. doi: 10.1016/j.biomaterials.2012.01.063http://dx.doi.org/10.1016/j.biomaterials.2012.01.063
LU Y Q, ZHAO J B, ZHANG R, et al. Tunable lifetime multiplexing using luminescent nanocrystals [J]. Nat. Photonics, 2014, 8(1): 32-36. doi: 10.1038/nphoton.2013.322http://dx.doi.org/10.1038/nphoton.2013.322
DENG R R, LIU X G. Tunable lifetime nanocrystals [J]. Nat. Photonics, 2014, 8(1): 10-12. doi: 10.1038/nphoton.2013.353http://dx.doi.org/10.1038/nphoton.2013.353
DING M Y, CHEN D Q, MA D Y, et al. Tuning the upconversion luminescence lifetimes of KYb2F7∶Ho3+ nanocrystals for optical multiplexing [J]. ChemPhysChem, 2015, 16(18): 3784-3789. doi: 10.1002/cphc.201500795http://dx.doi.org/10.1002/cphc.201500795
ZHAO J B, LU Z D, YIN Y D, et al. Upconversion luminescence with tunable lifetime in NaYF4∶Yb, Er nanocrystals: role of nanocrystal size [J]. Nanoscale, 2013, 5(3): 944-952. doi: 10.1039/c2nr32482bhttp://dx.doi.org/10.1039/c2nr32482b
KONG M Y, GU Y Y, LIU Y L, et al. Luminescence lifetime-based in vivo detection with responsive rare earth-dye nanocomposite [J]. Small, 2019, 15(46): 1904487-1-7. doi: 10.1002/smll.201904487http://dx.doi.org/10.1002/smll.201904487
YANG Y, ZHU Y B, ZHOU J J, et al. Integrated strategy for high luminescence intensity of upconversion nanocrystals [J]. ACS Photonics, 2017, 4(8): 1930-1936. doi: 10.1021/acsphotonics.7b00123http://dx.doi.org/10.1021/acsphotonics.7b00123
ZHOU L, FAN Y, WANG R, et al. High-capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection [J]. Angew. Chem. Int. Ed., 2018, 57(39): 12824-12829. doi: 10.1002/anie.201808209http://dx.doi.org/10.1002/anie.201808209
RUNOWSKI M, MARCINIAK J, GRZYB T, et al. Lifetime nanomanometry-high-pressure luminescence of up-converting lanthanide nanocrystals-SrF2∶Yb3+, Er3+ [J]. Nanoscale, 2017, 9(41): 16030-16037. doi: 10.1039/c7nr04353hhttp://dx.doi.org/10.1039/c7nr04353h
FERNANDEZ-BRAVO A, YAO K Y, BARNARD E S, et al. Continuous-wave upconverting nanoparticle microlasers [J]. Nat. Nanotechnol., 2018, 13(7): 572-577. doi: 10.1038/s41565-018-0161-8http://dx.doi.org/10.1038/s41565-018-0161-8
SHANG Y F, ZHOU J J, CAI Y J, et al. Low threshold lasing emissions from a single upconversion nanocrystal [J] Nat. Commun., 2020, 11(1): 6156-1-7. doi: 10.1038/s41467-020-19797-4http://dx.doi.org/10.1038/s41467-020-19797-4
YANG X F, LYU Z Y, DONG H, et al. Lanthanide upconverted microlasing: microlasing spanning full visible spectrum to near-infrared under low power, CW pumping [J]. Small, 2021, 17(41): 2103140-1-7. doi: 10.1002/smll.202103140http://dx.doi.org/10.1002/smll.202103140
MEIJERINK A, RABOUW F T. Giant photon avalanches observed in nanoparticles [J]. Nature, 2021, 589(7841): 204-205. doi: 10.1038/d41586-020-03659-6http://dx.doi.org/10.1038/d41586-020-03659-6
LEE C, XU E Z, LIU Y W, et al. Giant nonlinear optical responses from photon-avalanching nanoparticles [J]. Nature, 2021, 589(7841): 230-235. doi: 10.1038/s41586-020-03092-9http://dx.doi.org/10.1038/s41586-020-03092-9
LIANG Y S, ZHU Z M, QIAO S Q, et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity [J]. Nat. Nanotechnol., 2022, 17(5): 524-530. doi: 10.1038/s41565-022-01101-8http://dx.doi.org/10.1038/s41565-022-01101-8
DONG H, SUN L D, YAN C H. Lanthanide-doped upconversion nanoparticles for super-resolution microscopy [J]. Front. Chem., 2021, 8: 619377-1-8. doi: 10.3389/fchem.2020.619377http://dx.doi.org/10.3389/fchem.2020.619377
0
Views
661
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution