浏览全部资源
扫码关注微信
1.河南大学 未来技术学院, 光伏材料省重点实验室, 河南 开封 475001
2.河南大学 拓扑功能材料研究中心, 河南 开封 475001
Published:05 November 2023,
Received:12 May 2023,
Revised:29 May 2023,
移动端阅览
赵梦真,李超,张凤等.Eu3+掺杂诱导CsAgCl2相变及其光学温度传感性质[J].发光学报,2023,44(11):1950-1957.
ZHAO Mengzhen,LI Chao,ZHANG Feng,et al.Eu3+ Doping Induced Phase Transition in CsAgCl2 and Its Optical Temperature Sensing Properties[J].Chinese Journal of Luminescence,2023,44(11):1950-1957.
赵梦真,李超,张凤等.Eu3+掺杂诱导CsAgCl2相变及其光学温度传感性质[J].发光学报,2023,44(11):1950-1957. DOI: 10.37188/CJL.20230129.
ZHAO Mengzhen,LI Chao,ZHANG Feng,et al.Eu3+ Doping Induced Phase Transition in CsAgCl2 and Its Optical Temperature Sensing Properties[J].Chinese Journal of Luminescence,2023,44(11):1950-1957. DOI: 10.37188/CJL.20230129.
相变是调节材料性能的一种有效方法,在介电、光电、光致发光等领域有着广泛的应用。本文采用水热法合成未知相CsAgCl
2
,并通过升温和Eu
3+
掺杂将CsAgCl
2
从未知相转变为正交相。制备的Eu
3+
掺杂的CsAgCl
2
具有较高的光学温度灵敏度,在荧光强度模式和荧光寿命模式下的最大相对灵敏度分别为3.63%·K
-1
和3.20%·K
-1
。结果表明,CsAgCl
2
是一种很有前途的高灵敏度光学温度传感材料。
Phase transition is an effective way to regulate performance of materials and has been wildly applied in dielectric, photo-electricity and photoluminescence fields. Here, we report the hydrothermal synthesis of unknown phase CsAgCl
2
and the phase transition of CsAgCl
2
from unknown phase to orthogonal phase
via
annealing and Eu
3+
doping strategies. The as-prepared Eu
3+
doping CsAgCl
2
exhibits high optical temperature sensitivities with the maximum relative sensitivity values of 3.63%·K
-1
and 3.20%·K
-1
for emission intensity mode and decay lifetime mode, respectively. These results indicate that CsAgCl
2
is a promising candidate to be used as a high-sensitive optical temperature sensing material.
相变光学温度传感水热合成CsAgCl2Eu3+掺杂
phase transitionoptical temperature sensinghydrothermal synthesisCsAgCl2Eu3+ doping
ZHANG Q, YIN Y D. All-inorganic metal halide perovskite nanocrystals: opportunities and challenges [J]. ACS Cent. Sci., 2018, 4(6): 668-679. doi: 10.1021/acscentsci.8b00201http://dx.doi.org/10.1021/acscentsci.8b00201
FAKHARUDDIN A, GANGISHETTY M K, ABDI-JALEBI M, et al. Perovskite light-emitting diodes [J]. Nat. Electron., 2022, 5(4): 203-216. doi: 10.1038/s41928-022-00745-7http://dx.doi.org/10.1038/s41928-022-00745-7
ZHANG J R, HODES G, JIN Z W, et al. All-inorganic CsPbX3 perovskite solar cells: progress and prospects [J]. Angew. Chem. Int. Ed., 2019, 58(44): 15596-15618. doi: 10.1002/anie.201901081http://dx.doi.org/10.1002/anie.201901081
CAO F R, LI L. Progress of lead-free halide perovskites: from material synthesis to photodetector application [J]. Adv. Funct. Mater., 2021, 31(11): 2008275. doi: 10.1002/adfm.202008275http://dx.doi.org/10.1002/adfm.202008275
XIE K H, WEI S J, ALHADHRAMI A, et al. Synthesis of CsPbBr3/CsPb2Br5@silica yolk-shell composite microspheres: precisely controllable structure and improved catalytic activity for dye degradation [J]. Adv. Compos. Hybrid Mater., 2022, 5(2): 1423-1432. doi: 10.1007/s42114-022-00520-4http://dx.doi.org/10.1007/s42114-022-00520-4
LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature, 2018, 563(7732): 541-545. doi: 10.1038/s41586-018-0691-0http://dx.doi.org/10.1038/s41586-018-0691-0
YAKUNIN S, BENIN B M, SHYNKARENKO Y, et al. High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites [J]. Nat. Mater., 2019, 18(8): 846-852. doi: 10.1038/s41563-019-0416-2http://dx.doi.org/10.1038/s41563-019-0416-2
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报, 2021, 42(6): 733-754. doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SU B B, XIA Z G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials [J]. Chin. J. Lumin., 2021, 42(6): 733-754. (in Chinese). doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
ZHANG Z X, ZHAO R T, TENG S Y, et al. Color tunable self-trapped emissions from lead-free all inorganic IA-IB bimetallic halides Cs-Ag-X (X = Cl, Br, I) [J]. Small, 2020, 16(44): 2004272. doi: 10.1002/smll.202004272http://dx.doi.org/10.1002/smll.202004272
WANG Q L, SOUTHERLAND H, LI J R, et al. Crystal-to-crystal transformation of magnets based on heptacyanomolybdate(III) involving dramatic changes in coordination mode and ordering temperature [J]. Angew. Chem., 2012, 124(37): 9455-9458. doi: 10.1002/ange.201203309http://dx.doi.org/10.1002/ange.201203309
HU C H, ENGLERT U. Space filling versus symmetry: two consecutive crystal-to-crystal phase transitions in a 2D network [J]. Angew. Chem. Int. Ed., 2006, 45(21): 3457-3459. doi: 10.1002/anie.200504460http://dx.doi.org/10.1002/anie.200504460
AVENDANO C, ZHANG Z Y, OTA A, et al. Dramatically different conductivity properties of metal-organic framework polymorphs of Tl(TCNQ): an unexpected room-temperature crystal-to-crystal phase transition [J]. Angew. Chem. Int. Ed., 2011, 50(29): 6543-6547. doi: 10.1002/anie.201100372http://dx.doi.org/10.1002/anie.201100372
LIU Y J, LI A S, XU S P, et al. Reversible luminescent switching in an organic cocrystal: multi-stimuli-induced crystal-to-crystal phase transformation [J]. Angew. Chem. Int. Ed., 2020, 59(35): 15098-15103. doi: 10.1002/anie.202002220http://dx.doi.org/10.1002/anie.202002220
LV X H, LIAO W Q, LI P F, et al. Dielectric and photoluminescence properties of a layered perovskite-type organic-inorganic hybrid phase transition compound: NH3(CH2)5NH3MnCl4 [J]. J. Mater. Chem. C, 2016, 4(9): 1881-1885. doi: 10.1039/c5tc04114ghttp://dx.doi.org/10.1039/c5tc04114g
HAN D C, TAN Y H, WU W C, et al. High-temperature phase transition containing switchable dielectric behavior, long fluorescence lifetime, and distinct photoluminescence changes in a 2D hybrid CuBr4 perovskite [J]. Inorg. Chem., 2021, 60(24): 18918-18923. doi: 10.1021/acs.inorgchem.1c02720http://dx.doi.org/10.1021/acs.inorgchem.1c02720
ŠIMĖNAS M, BALČIU̅NAS S, GA̧ GOR A, et al. Mixology of MA1-xEAxPbI3 hybrid perovskites: phase transitions, cation dynamics, and photoluminescence [J]. Chem. Mater., 2022, 34(22): 10104-10112. doi: 10.1021/acs.chemmater.2c02807http://dx.doi.org/10.1021/acs.chemmater.2c02807
SHI C, HAN X B, ZHANG W. Structural phase transition-associated dielectric transition and ferroelectricity in coordination compounds [J]. Coord. Chem. Rev., 2019, 378: 561-576. doi: 10.1016/j.ccr.2017.09.020http://dx.doi.org/10.1016/j.ccr.2017.09.020
MA J P, CHEN J K, YIN J, et al. Doping induces structural phase transitions in all-inorganic lead halide perovskite nanocrystals [J]. ACS Mater. Lett., 2020, 2(4): 367-375. doi: 10.1021/acsmaterialslett.0c00059http://dx.doi.org/10.1021/acsmaterialslett.0c00059
YAN Z P, LI N N, WANG L Y, et al. Pressure-induced two-color photoluminescence and phase transition of two-dimensional layered MnCl2 [J]. J. Phys. Chem. C, 2020, 124(42): 23317-23323. doi: 10.1021/acs.jpcc.0c06598http://dx.doi.org/10.1021/acs.jpcc.0c06598
RAHIMZADEGAN A, ARSLAN D, SURYADHARMA R N S, et al. Disorder-induced phase transitions in the transmission of dielectric metasurfaces [J]. Phys. Rev. Lett., 2019, 122(1): 015702. doi: 10.1103/physrevlett.122.015702http://dx.doi.org/10.1103/physrevlett.122.015702
MA J P, YIN J, CHEN Y M, et al. Defect-triggered phase transition in cesium lead halide perovskite nanocrystals [J]. ACS Mater. Lett., 2019, 1(1): 185-191. doi: 10.1021/acsmaterialslett.9b00128http://dx.doi.org/10.1021/acsmaterialslett.9b00128
DOBROVOLSKY A, MERDASA A, UNGER E L, et al. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites [J]. Nat. Commun., 2017, 8(1): 34. doi: 10.1038/s41467-017-00058-whttp://dx.doi.org/10.1038/s41467-017-00058-w
GAEBELL H C, MEYER G, HOPPE R. Über Chloroargentate(I): CsAgCl2 und schwarzes CsAgCl2+x [J]. Z. Anorg. Allg. Chem., 1983, 497(2): 199-205. doi: 10.1002/zaac.19834970219http://dx.doi.org/10.1002/zaac.19834970219
HULL S, BERASTEGUI P. Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides-II: ordered phases within the (AgX)x(MX)1-x and (CuX)x(MX)1-x (M = K, Rb and Cs; X = Cl, Br and I) systems [J]. J. Solid State Chem., 2004, 177(9): 3156-3173. doi: 10.1016/j.jssc.2004.05.004http://dx.doi.org/10.1016/j.jssc.2004.05.004
WU D F, ZHOU J E, KANG W, et al. Ultrastable lead-free CsAgCl2 perovskite microcrystals for photocatalytic CO2 reduction [J]. J. Phys. Chem. Lett., 2021, 12(21): 5110-5114. doi: 10.1021/acs.jpclett.1c01128http://dx.doi.org/10.1021/acs.jpclett.1c01128
TIAN T F, XIONG X H, ZHAO Y X, et al. Ultra-wideband warm white light emission from self-trapped excitons in CsAgCl2 [J]. J. Alloys Compd., 2022, 895: 162632. doi: 10.1016/j.jallcom.2021.162632http://dx.doi.org/10.1016/j.jallcom.2021.162632
ZHAO X X, SUN J H, GUO Z Y, et al. One-step hydrothermal synthesis of monoclinic vanadium dioxide nanoparticles with low phase transition temperature [J]. Chem. Eng. J., 2022, 446: 137308. doi: 10.1016/j.cej.2022.137308http://dx.doi.org/10.1016/j.cej.2022.137308
JIANG Z L, TIAN S L, LAI S Q, et al. Capturing phase evolution during solvothermal synthesis of metastable Cu4O3 [J]. Chem. Mater., 2016, 28(9): 3080-3089. doi: 10.1021/acs.chemmater.6b00421http://dx.doi.org/10.1021/acs.chemmater.6b00421
QIAN L X, YAO L, LIU Y P, et al. Hydrothermal synthesis and structures of unknown intermediate phase Zn(HCO3)2∙H2O nanoflakes and final ZnO nanorods [J]. Inorg. Chem., 2022, 61(5): 2669-2678. doi: 10.1021/acs.inorgchem.1c03810http://dx.doi.org/10.1021/acs.inorgchem.1c03810
KESHAVARZ M, OTTESEN M, WIEDMANN S, et al. Tracking structural phase transitions in lead-halide perovskites by means of thermal expansion [J]. Adv. Mater., 2019, 31(24): 1900521. doi: 10.1002/adma.201900521http://dx.doi.org/10.1002/adma.201900521
LIAN L Y, ZHENG M Y, ZHANG P, et al. Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): highly luminescent self-trapped excitons from local structure symmetrization [J]. Chem. Mater., 2020, 32(8): 3462-3468. doi: 10.1021/acs.chemmater.9b05321http://dx.doi.org/10.1021/acs.chemmater.9b05321
CHEN X, QIU Z J, XING H L, et al. Sulfur-doping/leaching induced structural transformation toward boosting electrocatalytic water splitting [J]. Appl. Catal. B: Environ., 2022, 305: 121030. doi: 10.1016/j.apcatb.2021.121030http://dx.doi.org/10.1016/j.apcatb.2021.121030
SHE S X, ZHU Y L, WU X H, et al. Realizing high and stable electrocatalytic oxygen evolution for iron-based perovskites by co-doping-induced structural and electronic modulation [J]. Adv. Funct. Mater., 2022, 32(15): 2111091. doi: 10.1002/adfm.202111091http://dx.doi.org/10.1002/adfm.202111091
KOCHAT V, APTE A, HACHTEL J A, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism [J]. Adv. Mater., 2017, 29(43): 1703754. doi: 10.1002/adma.201770315http://dx.doi.org/10.1002/adma.201770315
LI S F, YANG G, YUAN H L, et al. Photoluminescence performance of Tb3+/Eu3+ doped Bi2Sn2O7 phosphors [J]. Chem. Phys. Lett., 2022, 786: 139211. doi: 10.1016/j.cplett.2021.139211http://dx.doi.org/10.1016/j.cplett.2021.139211
YANG J, QUAN Z W, KONG D Y, et al. Y2O3∶Eu3+ microspheres: solvothermal synthesis and luminescence properties [J]. Cryst. Growth Des., 2007, 7(4): 730-735. doi: 10.1021/cg060717jhttp://dx.doi.org/10.1021/cg060717j
CHI F F, JIANG B, ZHAO Z M, et al. Multimodal temperature sensing using Zn2GeO4∶Mn2+ phosphor as highly sensitive luminescent thermometer [J]. Sens. Actuators B: Chem., 2019, 296: 126640. doi: 10.1016/j.snb.2019.126640http://dx.doi.org/10.1016/j.snb.2019.126640
HUANG S X, ZHANG F, WU Z Y, et al. A highly sensitive ratiometric optical cryothermometer using a new broadband emitting trivalent bismuth singly activated Ba2ZnSc(BO3)3 microcrystal [J]. Dalton Trans., 2021, 50(40): 14342-14351. doi: 10.1039/d1dt02265bhttp://dx.doi.org/10.1039/d1dt02265b
0
Views
103
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution