浏览全部资源
扫码关注微信
1.南京工业大学 柔性电子(未来技术)学院, 江苏 南京 211816
2.南京医科大学 附属肿瘤医院, 江苏 南京 210009
Published:05 November 2023,
Received:12 May 2023,
Revised:26 May 2023,
移动端阅览
张龙,黄众熙,沈倩等.原位成像检测活性酶的分子荧光探针研究进展[J].发光学报,2023,44(11):2057-2075.
ZHANG Long,HUANG Zhongxi,SHEN Qian,et al.Recent Progress in Small-molecule Fuorescent Probes for in situ Imaging and Detection of Enzyme[J].Chinese Journal of Luminescence,2023,44(11):2057-2075.
张龙,黄众熙,沈倩等.原位成像检测活性酶的分子荧光探针研究进展[J].发光学报,2023,44(11):2057-2075. DOI: 10.37188/CJL.20230128.
ZHANG Long,HUANG Zhongxi,SHEN Qian,et al.Recent Progress in Small-molecule Fuorescent Probes for in situ Imaging and Detection of Enzyme[J].Chinese Journal of Luminescence,2023,44(11):2057-2075. DOI: 10.37188/CJL.20230128.
活性酶普遍存在于各种生命活动中,一些疾病与活性酶的异常表达息息相关,精确检测酶的表达水平以及原位成像,为相关疾病的诊断与治疗提供了有力的判断依据。至今,大量的检测技术已经开发出来,其中以分子荧光探针为代表的光学技术具有非侵袭性以及灵敏度高、检测限低、响应时间快和生物相容性好等优势,在检测活性酶上备受青睐。然而,在使用分子荧光探针检测时,由于小分子容易在酶活性位点发生扩散,无法定位,导致探针时空分辨率较差。因此,为提高成像检测的时空分辨率、降低背景干扰和假阳性,原位成像的设计理念随之提出,已成为生物光学成像的研究热点之一。目前,研究者已报道多种分子荧光探针用于酶的原位成像的设计并取得显著效果。本文将深入介绍用于活性酶检测的分子荧光探针的设计策略及其在原位成像中的研究进展,希望为该领域的研究者们提供一些启发。
Enzyme widely exists in various life activities. Some diseases are closely related to abnormal expression of active enzymes. Accurate detection of enzyme expression levels and
in situ
imaging provide a powerful basis for diagnosis and treatment of related diseases. Up to now, a large number of detection technologies have been developed, among which the fluorescent technology represented by small-molecule fluorescent probes has advantages such as non-invasive, high sensitivity, low detection limit, fast response time and good biocompatibility. It is favored in the detection of biological enzyme. However, as small-molecule fluorescent probes are used for detection, they tend to diffuse at the active sites of enzyme, resulting in poor spatial and temporal resolution of the probes. Therefore, in order to improve the spatial and temporal resolution of imaging detection and reduce background interference and false positives, the design of
in situ
imaging has been proposed, which has become one of the research focuses of optical imaging. At present, researchers have reported that a variety of small-molecular fluorescent probes have been used in the design of enzyme
in situ
imaging and achieved remarkable results. This review will introduce the design strategy of small-molecular fluorescent probes for enzyme detection and the research progress
in situ
imaging, hoping to provide some inspirations for researchers in this field.
原位成像分子荧光探针活性酶研究进展
in situ imagingsmall-molecule fluorescent probesenzymerecent progress
LIU H W, CHEN L L, XU C Y, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging [J]. Chem. Soc. Rev., 2018, 47(18): 7140-7180. doi: 10.1039/c7cs00862ghttp://dx.doi.org/10.1039/c7cs00862g
HAN H H, TIAN H J R, ZANG Y, et al. Small-molecule fluorescence-based probes for interrogating major organ diseases [J]. Chem. Soc. Rev., 2021, 50(17): 9391-9429. doi: 10.1039/d0cs01183ehttp://dx.doi.org/10.1039/d0cs01183e
YANG Y X, ZHANG L, WANG J M, et al. Diagnosis of Alzheimer’s disease and in situ biological imaging via an activatable near-infrared fluorescence probe [J]. Anal. Chem., 2022, 94(39): 13498-13506. doi: 10.1021/acs.analchem.2c02627http://dx.doi.org/10.1021/acs.analchem.2c02627
TALUKDAR R, SAREEN A, ZHU H Y, et al. Release of cathepsin B in cytosol causes cell death in acute pancreatitis [J]. Gastroenterology, 2016, 151(4): 747-758.e5. doi: 10.1053/j.gastro.2016.06.042http://dx.doi.org/10.1053/j.gastro.2016.06.042
CRUNKHORN S. BACE1 inhibitor reduces β-amyloid production in humans [J]. Nat. Rev. Drug Discov., 2017, 16(1): 18. doi: 10.1038/nrd.2016.271http://dx.doi.org/10.1038/nrd.2016.271
WOZNIAK J, FLOEGE J, OSTENDORF T, et al. Key metalloproteinase-mediated pathways in the kidney [J]. Nat. Rev. Nephrol., 2021, 17(8): 513-527. doi: 10.1038/s41581-021-00415-5http://dx.doi.org/10.1038/s41581-021-00415-5
郭静璇, 陈海燕, 袁振伟. 用于脑部疾病诊断的有机小分子荧光探针研究进展 [J]. 山东化工, 2022, 51(22): 105-108. doi: 10.3969/j.issn.1008-021X.2022.22.030http://dx.doi.org/10.3969/j.issn.1008-021X.2022.22.030
GUO J X, CHEN H Y, YUAN Z W. Advances in organic small molecule fluorescent probes for diagnosis of brain diseases [J]. Shandong Chem. Ind., 2022, 51(22): 105-108. (in Chinese). doi: 10.3969/j.issn.1008-021X.2022.22.030http://dx.doi.org/10.3969/j.issn.1008-021X.2022.22.030
JIANG X Q, WANG L F, CARROLL S L, et al. Challenges and opportunities for small-molecule fluorescent probes in redox biology applications [J]. Antioxid. Redox Signal., 2018, 29(6): 518-540. doi: 10.1089/ars.2017.7491http://dx.doi.org/10.1089/ars.2017.7491
THURBER G M, SCHMIDT M M, WITTRUP K D. Factors determining antibody distribution in tumors [J]. Trends Pharmacol. Sci., 2008, 29(2): 57-61.
XING J, GONG Q Y, AKAKURU O U, et al. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment [J]. Nanoscale, 2020, 12(48): 24311-24330. doi: 10.1039/d0nr06867ehttp://dx.doi.org/10.1039/d0nr06867e
YANG J, LEI Z, LIU X, et al. Versatile performance of a cationic surfactant derived from carbon quantum dots [J]. Acta Phys. Chim. Sinica, 2022, 38(12): 2111030-1-9.
MIEOG J S D, ACHTERBERG F B, ZLITNI A, et al. Fundamentals and developments in fluorescence-guided cancer surgery [J]. Nat. Rev. Clin. Oncol., 2022, 19(1): 9-22. doi: 10.1038/s41571-021-00548-3http://dx.doi.org/10.1038/s41571-021-00548-3
WANG K, LIU C Y, ZHU H C, et al. Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues [J]. Coord. Chem. Rev., 2023, 477: 214946. doi: 10.1016/j.ccr.2022.214946http://dx.doi.org/10.1016/j.ccr.2022.214946
ZHU H, FAN J L, WANG J Y, et al. An “enhanced PET”-based fluorescent probe with ultrasensitivity for imaging basal and elesclomol-induced HCLO in cancer cells [J]. J. Am. Chem. Soc., 2014, 136(37): 12820-12823. doi: 10.1021/ja505988ghttp://dx.doi.org/10.1021/ja505988g
WANG H, WEI J, ZHANG C H, et al. Red carbon dots as label-free two-photon fluorescent nanoprobes for imaging of formaldehyde in living cells and zebrafishes [J]. Chin. Chem. Lett., 2020, 31(3): 759-763. doi: 10.1016/j.cclet.2019.09.021http://dx.doi.org/10.1016/j.cclet.2019.09.021
YU C M, WANG S X, XU C C, et al. Two-photon small-molecule fluorogenic probes for visualizing endogenous nitroreductase activities from tumor tissues of a cancer patient [J]. Adv. Healthc. Mater., 2022, 11(14): 2200400. doi: 10.1002/adhm.202200400http://dx.doi.org/10.1002/adhm.202200400
WANG S X, ZHOU B C, WANG N, et al. Mitochondria-targeted fluorescent probe based on vibration-induced emission for real-time monitoring mitophagy-specific viscosity dynamic [J]. Chin. Chem. Lett., 2020, 31(11): 2897-2902. doi: 10.1016/j.cclet.2020.03.037http://dx.doi.org/10.1016/j.cclet.2020.03.037
ZHANG G B, ZHAO Y F, PENG B, et al. A fluorogenic probe based on chelation⁃hydrolysis-enhancement mechanism for visualizing Zn2+ in Parkinson's disease models [J]. J. Mater. Chem. B, 2019, 7(14): 2252-2260. doi: 10.1039/c8tb03343ahttp://dx.doi.org/10.1039/c8tb03343a
LI H, XIN C Q, ZHANG G B, et al. A mitochondria-targeted two-photon fluorogenic probe for the dual-imaging of viscosity and H2O2 levels in Parkinson's disease models [J]. J. Mater. Chem. B, 2019, 7(27): 4243-4251. doi: 10.1039/c9tb00576ehttp://dx.doi.org/10.1039/c9tb00576e
JI W H, TANG X, DU W, et al. Optical/electrochemical methods for detecting mitochondrial energy metabolism [J]. Chem. Soc. Rev., 2022, 51(1): 71-127. doi: 10.1039/d0cs01610ahttp://dx.doi.org/10.1039/d0cs01610a
YADAV A K, ZHAO Z X, WENG Y R, et al. Hydrolysis-resistant ester-based linkers for development of activity-based NIR bioluminescence probes [J]. J. Am. Chem. Soc., 2023, 145(2): 1460-1469. doi: 10.1021/jacs.2c12984http://dx.doi.org/10.1021/jacs.2c12984
HU Z H, FANG C, LI B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows [J]. Nat. Biomed. Eng., 2020, 4(3): 259-271. doi: 10.1038/s41551-019-0494-0http://dx.doi.org/10.1038/s41551-019-0494-0
VAN DAM G M, THEMELIS G, CRANE L M A, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results [J]. Nat. Med., 2011, 17(10): 1315-1319. doi: 10.1038/nm.2472http://dx.doi.org/10.1038/nm.2472
SCHMITZ K. Introduction to bioorganic chemistry and chemical biology. By David Van Vranken and Gregory A. Weiss [J]. Angew. Chem. Int. Ed., 2013, 52(24): 6138-6138. doi: 10.1002/anie.201303373http://dx.doi.org/10.1002/anie.201303373
LI Z, HE X Y, WANG Z, et al. In vivo imaging and detection of nitroreductase in zebrafish by a new near-infrared fluorescence off-on probe [J]. Biosens. Bioelectron., 2015, 63: 112-116. doi: 10.1016/j.bios.2014.07.024http://dx.doi.org/10.1016/j.bios.2014.07.024
ASANUMA D, SAKABE M, KAMIYA M, et al. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo [J]. Nat. Commun., 2015, 6: 6463-1-7. doi: 10.1038/ncomms7463http://dx.doi.org/10.1038/ncomms7463
LUO Z L, FENG L D, AN R B, et al. Activatable Near-infrared probe for fluorescence imaging of γ-glutamyl transpeptidase in tumor cells and in vivo [J]. Chem. Eur. J., 2017, 23(59): 14778-14785. doi: 10.1002/chem.201702210http://dx.doi.org/10.1002/chem.201702210
WU X F, SHI W, LI X H, et al. Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes [J]. Acc. Chem. Res., 2019, 52(7): 1892-1904. doi: 10.1021/acs.accounts.9b00214http://dx.doi.org/10.1021/acs.accounts.9b00214
LIU X Y, YU B, SHEN Y Q, et al. Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications [J]. Coord. Chem. Rev., 2022, 468: 214609-1-33. doi: 10.1016/j.ccr.2022.214609http://dx.doi.org/10.1016/j.ccr.2022.214609
钞静静, 王文新, 王之卿, 等. 用于生物成像的近红外小分子荧光探针的研究进展 [J]. 化学试剂, 2023, 45(6): 52-60.
CHAO J J, WANG W X, WANG Z Q, et al. Recent progress in near-infrared small-molecule fluorescent probes for bioimaging [J]. Chem. Reagents, 2023, 45(6): 52-60. (in Chinese)
桑若愚, 许兴鹏, 王其, 等. 近红外二区有机小分子荧光探针 [J]. 化学学报, 2020, 78(9): 901-915. doi: 10.6023/a20050190http://dx.doi.org/10.6023/a20050190
SANG R Y, XU X P, WANG Q, et al. Near-infrared-Ⅱ fluorescence probes based on organic small molecules [J]. Acta Chim. Sinica, 2020, 78(9): 901-915. (in Chinese). doi: 10.6023/a20050190http://dx.doi.org/10.6023/a20050190
WU L L, HUANG C S, EMERY B P, et al. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents [J]. Chem. Soc. Rev., 2020, 49(15): 5110-5139. doi: 10.1039/c9cs00318ehttp://dx.doi.org/10.1039/c9cs00318e
VALEUR B, LERAY I. Design principles of fluorescent molecular sensors for cation recognition [J]. Coord. Chem. Rev., 2000, 205(1): 3-40. doi: 10.1016/s0010-8545(00)00246-0http://dx.doi.org/10.1016/s0010-8545(00)00246-0
PAL A, KARMAKAR M, BHATTA S R, et al. A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: a comprehensive review of the years 2016 to 2021 [J]. Coord. Chem. Rev., 2021, 448: 214167-1-55. doi: 10.1016/j.ccr.2021.214167http://dx.doi.org/10.1016/j.ccr.2021.214167
DALY B, LING J, DE SILVA A P. Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches [J]. Chem. Soc. Rev., 2015, 44(13): 4203-4211. doi: 10.1039/c4cs00334ahttp://dx.doi.org/10.1039/c4cs00334a
LEE M H, KIM J S, SESSLER J L. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules [J]. Chem. Soc. Rev., 2015, 44(13): 4185-4191. doi: 10.1039/c4cs00280fhttp://dx.doi.org/10.1039/c4cs00280f
SHARATH KUMAR K S, GIRISH Y R, ASHRAFIZADEH M, et al. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: bioimaging, drug delivery and disease treatment [J]. Coord. Chem. Rev., 2021, 447: 214135-1-48. doi: 10.1016/j.ccr.2021.214135http://dx.doi.org/10.1016/j.ccr.2021.214135
ZHANG W J, HUO F J, CHENG F Q, et al. Employing an ICT-FRET integration platform for the real-time tracking of SO2 metabolism in cancer cells and tumor models [J]. J. Am. Chem. Soc., 2020, 142(13): 6324-6331. doi: 10.1021/jacs.0c00992http://dx.doi.org/10.1021/jacs.0c00992
HE L W, DONG B L, LIU Y, et al. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms [J]. Chem. Soc. Rev., 2016, 45(23): 6449-6461. doi: 10.1039/c6cs00413jhttp://dx.doi.org/10.1039/c6cs00413j
ZHANG Y J, LI S F, ZHANG H, et al. Design and application of receptor-targeted fluorescent probes based on small molecular fluorescent dyes [J]. Bioconjug. Chem., 2021, 32(1): 4-24. doi: 10.1021/acs.bioconjchem.0c00606http://dx.doi.org/10.1021/acs.bioconjchem.0c00606
POREBA M, SALVESEN G S, DRAG M. Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity [J]. Nat. Protoc., 2017, 12(10): 2189-2214. doi: 10.1038/nprot.2017.091http://dx.doi.org/10.1038/nprot.2017.091
ZHANG R, YONG J X, YUAN J L, et al. Recent advances in the development of responsive probes for selective detection of cysteine [J]. Coord. Chem. Rev., 2020, 408: 213182-1-41. doi: 10.1016/j.ccr.2020.213182http://dx.doi.org/10.1016/j.ccr.2020.213182
BLUM G, VON DEGENFELD G, MERCHANT M J, et al. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes [J]. Nat. Chem. Biol., 2007, 3(10): 668-677. doi: 10.1038/nchembio.2007.26http://dx.doi.org/10.1038/nchembio.2007.26
ALBROW V E, PONDER E L, FASCI D, et al. Development of small molecule inhibitors and probes of human sumo deconjugating proteases [J]. Chemistry & Biology, 2011, 18(6): 722-732. doi: 10.1016/j.chembiol.2011.05.008http://dx.doi.org/10.1016/j.chembiol.2011.05.008
LU H B, CHANDRASEKAR B, OELJEKLAUS J, et al. Subfamily-specific fluorescent probes for cysteine proteases display dynamic protease activities during seed germination [J]. Plant Physiol., 2015, 168(4): 1462-1475. doi: 10.1104/pp.114.254466http://dx.doi.org/10.1104/pp.114.254466
POREBA M, GROBORZ K, VIZOVISEK M, et al. Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples [J]. Chem. Sci., 2019, 10(36): 8461-8477. doi: 10.1039/c9sc00997chttp://dx.doi.org/10.1039/c9sc00997c
YOON M C, SOLANIA A, JIANG Z Z, et al. Selective neutral pH inhibitor of cathepsin B designed based on cleavage preferences at cytosolic and lysosomal pH conditions [J]. ACS Chem. Biol., 2021, 16(9): 1628-1643. doi: 10.1021/acschembio.1c00138http://dx.doi.org/10.1021/acschembio.1c00138
XU J H, JIANG Z Z, SOLANIA A, et al. A commensal dipeptidyl aminopeptidase with specificity for N-terminal glycine degrades human-produced antimicrobial peptides in vitro [J]. ACS Chem. Biol., 2018, 13(9): 2513-2521. doi: 10.1021/acschembio.8b00420http://dx.doi.org/10.1021/acschembio.8b00420
POREBA M, GROBORZ K M, RUT W, et al. Multiplexed probing of proteolytic enzymes using mass cytometry-compatible activity-based probes [J]. J. Am. Chem. Soc., 2020, 142(39): 16704-16715. doi: 10.1021/jacs.0c06762http://dx.doi.org/10.1021/jacs.0c06762
MYERS J K, WIDLANSKI T S. Mechanism-based inactivation of prostatic acid phosphatase [J]. Science, 1993, 262(5138): 1451-1453. doi: 10.1126/science.8248785http://dx.doi.org/10.1126/science.8248785
JANDA K D, LO L C, LO C H L, et al. Chemical selection for catalysis in combinatorial antibody libraries [J]. Science, 1997, 275(5302): 945-948. doi: 10.1126/science.275.5302.945http://dx.doi.org/10.1126/science.275.5302.945
TAI C H, LU C P, WU S H, et al. Synthesis and evaluation of turn-on fluorescent probes for imaging steroid sulfatase activities in cells [J]. Chem. Commun., 2014, 50(46): 6116-6119. doi: 10.1039/c4cc01282hhttp://dx.doi.org/10.1039/c4cc01282h
MAO W Y, XIA L Y, WANG Y Q, et al. A self-immobilizing and fluorogenic probe for β-lactamase detection [J]. Chem. Asian J., 2016, 11(24): 3493-3497. doi: 10.1002/asia.201601344http://dx.doi.org/10.1002/asia.201601344
JIANG J L, TAN Q W, ZHAO S X, et al. Late-stage difluoromethylation leading to a self-immobilizing fluorogenic probe for the visualization of enzyme activities in live cells [J]. Chem. Commun., 2019, 55(99): 15000-15003. doi: 10.1039/c9cc07903chttp://dx.doi.org/10.1039/c9cc07903c
HU M Y, LI L, WU H, et al. Multicolor, one- and two-photon imaging of enzymatic activities in live cells with fluorescently quenched activity-based probes (qABPs) [J]. J. Am. Chem. Soc., 2011, 133(31): 12009-12020. doi: 10.1021/ja200808yhttp://dx.doi.org/10.1021/ja200808y
KWAN D H, CHEN H M, RATANANIKOM K, et al. Self-immobilizing fluorogenic imaging agents of enzyme activity [J]. Angew. Chem. Int. Ed., 2011, 50(1): 300-303. doi: 10.1002/anie.201005705http://dx.doi.org/10.1002/anie.201005705
WANG Q P, DECHERT U, JIRIK F, et al. Suicide inactivation of human prostatic acid phosphatase and a phosphotyrosine phosphatase [J]. Biochem. Biophys. Res. Commun., 1994, 200(1): 577-583. doi: 10.1006/bbrc.1994.1487http://dx.doi.org/10.1006/bbrc.1994.1487
GAO Z Z, THOMPSON A J, PAULSON J C, et al. Proximity ligation-based fluorogenic imaging agents for neuraminidases [J]. Angew. Chem. Int. Ed., 2018, 57(41): 13538-13541. doi: 10.1002/anie.201808196http://dx.doi.org/10.1002/anie.201808196
YANG W, LIU X Y, PENG X X, et al. Synthesis of novel N-acetylneuraminic acid derivatives as substrates for rapid detection of influenza virus neuraminidase [J]. Carbohydr. Res., 2012, 359: 92-96. doi: 10.1016/j.carres.2012.06.009http://dx.doi.org/10.1016/j.carres.2012.06.009
LI Y Y, XUE C H, FANG Z J, et al. In vivo visualization of γ-glutamyl transpeptidase activity with an activatable self-immobilizing near-infrared probe [J]. Anal. Chem., 2020, 92(22): 15017-15024. doi: 10.1021/acs.analchem.0c02954http://dx.doi.org/10.1021/acs.analchem.0c02954
DIMRI G P, LEE X, BASILE G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo [J]. Proc. Natl. Acad. Sci. USA, 1995, 92(20): 9363-9367. doi: 10.1073/pnas.92.20.9363http://dx.doi.org/10.1073/pnas.92.20.9363
CHEN S J, WANG L, MA X D, et al. Kill two birds with one stone: a near-infrared ratiometric fluorescent probe for simultaneous detection of β-galactosidase in senescent and cancer cells [J]. Sens. Actuators B Chem., 2022, 367: 132061-1-11. doi: 10.1016/j.snb.2022.132061http://dx.doi.org/10.1016/j.snb.2022.132061
LIU J, MA X W, CUI C, et al. Noninvasive NIR imaging of senescence via in situ labeling [J]. J. Med. Chem., 2021, 64(24): 17969-17978. doi: 10.1021/acs.jmedchem.1c01313http://dx.doi.org/10.1021/acs.jmedchem.1c01313
BELOV V N, MITRONOVA G Y, BOSSI M L, et al. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications [J]. Chem. Eur. J., 2014, 20(41): 13162-13173. doi: 10.1002/chem.201403316http://dx.doi.org/10.1002/chem.201403316
HALABI E A, THIEL Z, TRAPP N, et al. A photoactivatable probe for super-resolution imaging of enzymatic activity in live cells [J]. J. Am. Chem. Soc., 2017, 139(37): 13200-13207. doi: 10.1021/jacs.7b07748http://dx.doi.org/10.1021/jacs.7b07748
THIEL Z, RIVERA-FUENTES P. Single-molecule imaging of active mitochondrial nitroreductases using a photo-crosslinking fluorescent sensor [J]. Angew. Chem. Int. Ed., 2019, 58(33): 11474-11478. doi: 10.1002/anie.201904700http://dx.doi.org/10.1002/anie.201904700
MCMORROW D, KASHA M. Intramolecular excited-state proton transfer in 3-hydroxyflavone. Hydrogen-bonding solvent perturbations [J]. J Phys. Chem., 1984, 88(11): 2235-2243. doi: 10.1021/j150655a012http://dx.doi.org/10.1021/j150655a012
ZHANG H, FAN J L, WANG J Y, et al. Fluorescence discrimination of cancer from inflammation by molecular response to COX-2 enzymes [J]. J. Am. Chem. Soc., 2013, 135(46): 17469-17475. doi: 10.1021/ja4085308http://dx.doi.org/10.1021/ja4085308
ZHANG H, FAN J L, WANG J Y, et al. An off-on COX-2-specific fluorescent probe: targeting the Golgi apparatus of cancer cells [J]. J. Am. Chem. Soc., 2013, 135(31): 11663-11669. doi: 10.1021/ja4056905http://dx.doi.org/10.1021/ja4056905
GURRAM B, ZHANG S Z, LI M, et al. Celecoxib conjugated fluorescent probe for identification and discrimination of cyclooxygenase-2 enzyme in cancer cells [J]. Anal. Chem., 2018, 90(8): 5187-5193. doi: 10.1021/acs.analchem.7b05337http://dx.doi.org/10.1021/acs.analchem.7b05337
XIA W X, ZHANG S Z, FAN J L, et al. Imaging and inhibiting cyclooxygenase-2 using aspirin-based fluorescent reporter for the treatment of breast cancer [J]. Sens. Actuators B Chem., 2021, 329: 129217-1-10. doi: 10.1016/j.snb.2020.129217http://dx.doi.org/10.1016/j.snb.2020.129217
WANG Y D, WEI Y H, HE N, et al. Evaluation of cyclooxygenase-2 fluctuation via a near-infrared fluorescent probe in idiopathic pulmonary fibrosis cell and mice models [J]. J. Mater. Chem. B, 2021, 9(31): 6226-6233. doi: 10.1039/d1tb01307fhttp://dx.doi.org/10.1039/d1tb01307f
LIU H W, LI K, HU X X, et al. In situ localization of enzyme activity in live cells by a molecular probe releasing a precipitating fluorochrome [J]. Angew. Chem. Int. Ed., 2017, 56(39): 11788-11792. doi: 10.1002/anie.201705747http://dx.doi.org/10.1002/anie.201705747
GUO W Y, FU Y X, LIU S Y, et al. Multienzyme-targeted fluorescent probe as a biosensing platform for broad detection of pesticide residues [J]. Anal. Chem., 2021, 93(18): 7079-7085. doi: 10.1021/acs.analchem.1c00553http://dx.doi.org/10.1021/acs.analchem.1c00553
侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用 [J]. 化学进展, 2021, 33(6): 1035-1043. doi: 10.7536/PC200659http://dx.doi.org/10.7536/PC200659
HOU X H, LIU SH N, GAO Q Z H. Application of small-molecule fluorescent probes in the development of green pesticides [J]. Prog. Chem., 2021, 33(6): 1035-1043. (in Chinese). doi: 10.7536/PC200659http://dx.doi.org/10.7536/PC200659
LOU X F, REN T B, CHEN H M, et al. High-fidelity imaging of lysosomal enzyme through in situ ordered assembly of small molecular fluorescent probes [J]. Biomaterials, 2022, 287: 121657. doi: 10.1016/j.biomaterials.2022.121657http://dx.doi.org/10.1016/j.biomaterials.2022.121657
LI Z, LIANG P Z, XU L, et al. In situ orderly self-assembly strategy affording NIR-II-J-aggregates for in vivo imaging and surgical navigation [J]. Nat. Commun., 2023, 14(1): 1843-1-14. doi: 10.1038/s41467-023-37586-7http://dx.doi.org/10.1038/s41467-023-37586-7
WANG R C, CHEN J, GAO J, et al. A molecular design strategy toward enzyme-activated probes with near-infrared I and II fluorescence for targeted cancer imaging [J]. Chem. Sci., 2019, 10(30): 7222-7227. doi: 10.1039/c9sc02093dhttp://dx.doi.org/10.1039/c9sc02093d
YANG Z, GU H, FU D, et al. Enzymatic formation of supramolecular hydrogels [J]. Adv. Mater., 2004, 16(16): 1440-1444. doi: 10.1002/adma.200400340http://dx.doi.org/10.1002/adma.200400340
REN C H, ZHANG J W, CHEN M S, et al. Self-assembling small molecules for the detection of important analytes [J]. Chem. Soc. Rev., 2014, 43(21): 7257-7266. doi: 10.1039/c4cs00161chttp://dx.doi.org/10.1039/c4cs00161c
YE D J, SHUHENDLER A J, CUI L N, et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo [J]. Nat. Chem., 2014, 6(6): 519-526. doi: 10.1038/nchem.1920http://dx.doi.org/10.1038/nchem.1920
DING F, LI C L, XU Y L, et al. PEGylation regulates self-assembled small-molecule dye-based probes from single molecule to nanoparticle size for multifunctional NIR-II bioimaging [J]. Adv. Healthc. Mater., 2018, 7(23): 1800973-1-9. doi: 10.1002/adhm.201800973http://dx.doi.org/10.1002/adhm.201800973
YAN R Q, HU Y X, LIU F, et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly [J]. J. Am. Chem. Soc., 2019, 141(26): 10331-10341. doi: 10.1021/jacs.9b03649http://dx.doi.org/10.1021/jacs.9b03649
REN H, ZENG X Z, ZHAO X X, et al. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging [J]. Nat. Commun., 2022, 13(1): 418-1-13. doi: 10.1038/s41467-021-27932-yhttp://dx.doi.org/10.1038/s41467-021-27932-y
YAN R Q, YE D J. Molecular imaging of enzyme activity in vivo using activatable probes [J]. Sci. Bull., 2016, 61(21): 1672-1679. doi: 10.1007/s11434-016-1175-yhttp://dx.doi.org/10.1007/s11434-016-1175-y
LI Y X, ZHOU H P, CHEN J, et al. Controlled self-assembly of small molecule probes and the related applications in bioanalysis [J]. Biosens. Bioelectron., 2016, 76: 38-53. doi: 10.1016/j.bios.2015.06.067http://dx.doi.org/10.1016/j.bios.2015.06.067
CHINEN A B, GUAN C M, FERRER J R, et al. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence [J]. Chem. Rev., 2015, 115(19): 10530-10574. doi: 10.1021/acs.chemrev.5b00321http://dx.doi.org/10.1021/acs.chemrev.5b00321
ZHU S J, TIAN R, ANTARIS A L, et al. Near-infrared-II molecular dyes for cancer imaging and surgery [J]. Adv. Mater., 2019, 31(24): 1900321-1-25. doi: 10.1002/adma.201900321http://dx.doi.org/10.1002/adma.201900321
徐蕴泽, 尧雨斯, 吕光磊, 等. 一种新型近红外荧光探针用于Aβ40聚集体的检测 [J]. 发光学报, 2022, 43(10): 1620-1627. doi: 10.37188/cjl.20220228http://dx.doi.org/10.37188/cjl.20220228
XU Y Z, YAO Y S, LYU G L, et al. A novel near-infrared fluorescent probe for detection of Aβ40 aggregates [J]. Chin. J. Lumin., 2022, 43(10): 1620-1627. (in Chinese). doi: 10.37188/cjl.20220228http://dx.doi.org/10.37188/cjl.20220228
解丽娟, 李建民. 7-二乙胺基-3-(2'-吡啶)香豆素的新用途: 溶酶体荧光探针 [J]. 发光学报, 2013, 34(11): 1538-1543. doi: 10.3788/fgxb20133411.1538http://dx.doi.org/10.3788/fgxb20133411.1538
XIE L J, LI J M. A new use of 7-(diethylamino)-3-(pyridine-2-yl) coumarin: as lysosome fluorescence probe [J]. Chin. J. Lumin., 2013, 34(11): 1538-1543. (in Chinese). doi: 10.3788/fgxb20133411.1538http://dx.doi.org/10.3788/fgxb20133411.1538
陈俊, 冯燕, 孟祥明. 一种线粒体靶向香豆素基pH荧光探针合成及性能 [J]. 发光学报, 2021, 42(4): 462-469. doi: 10.37188/CJL.20200363http://dx.doi.org/10.37188/CJL.20200363
CHEN J, FENG Y, MENG X M. Synthesis and properties of a mitochondria-targeted coumarin-based pH fluorescent probe [J]. Chin. J. Lumin., 2021, 42(4): 462-469. (in Chinese). doi: 10.37188/CJL.20200363http://dx.doi.org/10.37188/CJL.20200363
桂一雄, 陈可瑶, 罗文帅, 等. 近红外二区聚集诱导发光探针在生物医学中的应用 [J]. 发光学报, 2023, 44(2): 356-373. doi: 10.37188/CJL.20220284http://dx.doi.org/10.37188/CJL.20220284
GUI Y X, CHEN K Y, LUO W S, et al. Near-infrared-Ⅱ AIE probes for biomedical applications [J]. Chin. J. Lumin., 2023, 44(2): 356-373. (in Chinese). doi: 10.37188/CJL.20220284http://dx.doi.org/10.37188/CJL.20220284
孙静, 马会利, 安众福, 等. 高分子长余辉发光材料研究进展 [J]. 发光学报, 2020, 41(12): 1490-1503. doi: 10.37188/CJL.20200317http://dx.doi.org/10.37188/CJL.20200317
SUN J, MA H L, AN Z F, et al. Recent development of polymers with long-lived persistent luminescence [J]. Chin. J. Lumin., 2020, 41(12): 1490-1503. (in Chinese). doi: 10.37188/CJL.20200317http://dx.doi.org/10.37188/CJL.20200317
YU C M. Perovskite LEDs: world record of external quantum efficiency that approach those of the best-performing organic LEDs [J]. Mater. Rep., 2019, 33(11): 1773-1774.
苏哲, 秦文璟, 白磊, 等. 殝近红外二区荧光探针在生物成像领域的研究进展 [J]. 应用化学, 2019, 36(2): 123-136.
SU Z, QIN W J, BAI L, et al. Research progress on bioimaging with the second near-infrared fluorescence probes [J]. Chin. J. Appl. Chem., 2019, 36(2): 123-136. (in Chinese)
韦晶, 韩希思, 张承武, 等. 微小RNA纳米递送体系的构建及其研究进展 [J]. 材料导报, 2019, 33(1): 16-26. doi: 10.11896/cldb.201901002http://dx.doi.org/10.11896/cldb.201901002
WEI J, HAN X S, ZHANG C W, et al. Intracellular delivery of MicroRNA therapeutics based on nanocarriers: current status and future perspective [J]. Mater. Rep., 2019, 33(1): 16-26. (in Chinese). doi: 10.11896/cldb.201901002http://dx.doi.org/10.11896/cldb.201901002
SAMANTA S, HUANG M N, LI S Q, et al. AIE-active two-photon fluorescent nanoprobe with NIR-II light excitability for highly efficient deep brain vasculature imaging [J]. Theranostics, 2021, 11(5): 2137-2148. doi: 10.7150/thno.53780http://dx.doi.org/10.7150/thno.53780
LI H, KIM Y, JUNG H, et al. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy [J]. Chem. Soc. Rev., 2022, 51(21): 8957-9008. doi: 10.1039/d2cs00722chttp://dx.doi.org/10.1039/d2cs00722c
0
Views
222
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution