浏览全部资源
扫码关注微信
1.湖北大学微电子学院 微纳电子材料与器件湖北省重点实验室, 湖北 武汉 430062
2.江苏永鼎股份有限公司, 江苏 苏州 215211
3.湖北大学 潜江产业技术研究院, 湖北 潜江 433100
Published:05 September 2023,
Received:09 May 2023,
Revised:18 May 2023,
移动端阅览
王瑞,张铭,程宋玉等.Mn2+掺杂CsCdCl3微米晶发光性能及其LED应用[J].发光学报,2023,44(09):1560-1569.
WANG Rui,ZHANG Ming,CHENG Songyu,et al.Luminescent Properties of Mn2+-doped CsCdCl3 Microcrystals for LED Application[J].Chinese Journal of Luminescence,2023,44(09):1560-1569.
王瑞,张铭,程宋玉等.Mn2+掺杂CsCdCl3微米晶发光性能及其LED应用[J].发光学报,2023,44(09):1560-1569. DOI: 10.37188/CJL.20230125.
WANG Rui,ZHANG Ming,CHENG Songyu,et al.Luminescent Properties of Mn2+-doped CsCdCl3 Microcrystals for LED Application[J].Chinese Journal of Luminescence,2023,44(09):1560-1569. DOI: 10.37188/CJL.20230125.
全无机镉基金属卤化物CsCdCl
3
因其独特的三维晶体结构而具有优异的稳定性、宽带自陷激子(Self⁃trapped excitons,STEs)发射和丰富的离子掺杂格位,在固态照明领域引起了广泛关注。然而,基于八面体畸变的STEs辐射复合的发光效率较低。本文采用简单的室温溶液法制备了一系列Mn
2+
离子掺杂的六方相CsCdCl
3
∶
x
%Mn微米晶。在254 nm紫外光激发下,Mn
2+
掺杂的样品发出明亮的橙黄光,发射峰位于598 nm处,半峰宽为75 nm,荧光量子产率最高达99.1%。稳态和瞬态荧光光谱测试结果表明,Mn
2+
掺杂CsCdCl
3
微米晶的宽光谱发射源自基质的STEs和Mn
2+
离子的d⁃d跃迁。同时,该材料还具备优异的空气、热、水稳定性。我们进一步将CsCdCl
3
∶5%Mn
2+
荧光粉、商用荧光粉、深紫外或蓝光LED芯片封装成两种白光发光二极管器件,色度坐标分别为(0.36,0.35)和(0.40,0.36),显色指数分别高达91和83,有望成为新一代发光材料用于照明领域。
Owing to its excellent stability and wide self-trapped excitons(STEs)emission induced by the special three-dimensional(3D)crystal structure, all inorganic cadmium-based metal halide perovskite CsCdCl
3
has attracted broad attention in the field of solid-state lighting. However, the luminescence efficiency through radiative recombination of STEs is not high. Herein, a serious of Mn
2+
-doped hexagonal CsCdCl
3
∶
x
%Mn microcrystals were prepared by a facial room-temperature solution method. Under 254 nm UV excitation, CsCdCl
3
microcrystals after Mn
2+
doping show bright orange-yellowish emission peaking at about 598 nm with a full width at half-maximum of 75 nm and the photoluminescence quantum yield of 99.1%. Steady-state and transient photoluminescence results suggest that the broad emission is originating from the matrix STEs and the Mn
2+
dopant. Meanwhile, the as-synthesized materials also display excellent air, heat, and water stability. Two white light-emitting diodes(LEDs)were further fabricated by integrating a mixture of CsCdCl
3
∶5%Mn and commercial phosphors on a deep UV LED and a blue LED, which demonstrate bright white light with CIE coordinates of (0.36, 0.35) and (0.40, 0.36), high color rendering indices of 91 and 83, respectively. The synthesized Mn
2+
-doped CsCdCl
3
phosphor holds great promise for new-generation luminescent materials in the field of lighting.
CsCdCl3Mn2+掺杂发光性能发光二极管
CsCdCl3Mn2+ dopingluminescent propertieslight⁃emitting diode(LED)
HAN T H, JANG K Y, DONG Y T, et al. A roadmap for the commercialization of perovskite light emitters [J]. Nat. Rev. Mater., 2022, 7(10): 757-777. doi: 10.1038/s41578-022-00459-4http://dx.doi.org/10.1038/s41578-022-00459-4
JIANG Y Z, SUN C J, XU J, et al. Synthesis-on-substrate of quantum dot solids [J]. Nature, 2022, 612(7941): 679-684. doi: 10.1038/s41586-022-05486-3http://dx.doi.org/10.1038/s41586-022-05486-3
LI H F, LIU X Q, ZHOU D L, et al. Realization of 1.54 μm light-emitting diodes based on Er3+/Yb3+ co-doped CsPbCl3 films [J]. Adv. Mater., 2023, 35(25): 2300118. doi: 10.1002/adma.202300118http://dx.doi.org/10.1002/adma.202300118
沈亚龙, 韩博宁, 靳梓诺, 等. 室温合成具有超纯绿光发射的准二维CsPbBr3钙钛矿纳米片 [J]. 发光学报, 2023, 44(3): 508-517. doi: 10.37188/cjl.20220219http://dx.doi.org/10.37188/cjl.20220219
SHEN Y L, HAN B N, JIN Z N, et al. Room-temperature synthesis of quasi-2D CsPbBr3 nanoplatelets with ultrapure green light emissions [J]. Chin. J. Lumin., 2023, 44(3): 508-517. (in Chinese). doi: 10.37188/cjl.20220219http://dx.doi.org/10.37188/cjl.20220219
DEMIRBILEK R, BOZDOĞAN A Ç, ÇALİŞKAN M, et al. Electronic energy levels of CsCdCl3 [J]. J. Lumin., 2011, 131(9): 1853-1856. doi: 10.1016/j.jlumin.2011.05.003http://dx.doi.org/10.1016/j.jlumin.2011.05.003
ZHANG Y, ZHOU L, LI D, et al. Realizing efficient emission in three-dimensional CsCdCl3 single crystals by introducing separated emitting centers [J]. Inorg. Chem., 2022, 61(44): 17902-17910. doi: 10.1021/acs.inorgchem.2c03277http://dx.doi.org/10.1021/acs.inorgchem.2c03277
DEMIRBILEK R, FEILE R, BOZDOĞAN A Ç. Temperature dependent Raman spectra of CsCdBr3 and CsCdCl3 crystals [J]. J. Lumin., 2015, 161: 174-179. doi: 10.1016/j.jlumin.2015.01.024http://dx.doi.org/10.1016/j.jlumin.2015.01.024
HOSSAIN K, RABU R A, KHANOM M S, et al. First-principles calculations to investigate effect of X+ cations variation on structural, mechanical, electronic and optical properties of the XCdCl3 chloroperovskites [J]. Mater. Sci. Eng. B, 2023, 289: 116228. doi: 10.1016/j.mseb.2022.116228http://dx.doi.org/10.1016/j.mseb.2022.116228
LIU Y Q, ZHANG X Z, WANG X J, et al. Ultralong afterglow and unity quantum yield from a transparent CsCdCl3∶Mn crystal [J]. Aggregate, 2023,DOI: 10.1002/agt2.334http://dx.doi.org/10.1002/agt2.334.
JIA W Y, WEI Q L, YAO S F, et al. Magnetic coupling for highly efficient and tunable emission in CsCdX3∶Mn perovskites [J]. J. Lumin., 2023, 257: 119657. doi: 10.1016/j.jlumin.2022.119657http://dx.doi.org/10.1016/j.jlumin.2022.119657
ZHANG F, CHEN X, QI X F, et al. Regulating the singlet and triplet emission of Sb3+ ions to achieve single-component white-light emitter with record high color-rendering index and stability [J]. Nano Lett., 2022, 22(12): 5046-5054. doi: 10.1021/acs.nanolett.2c00733http://dx.doi.org/10.1021/acs.nanolett.2c00733
ZENG M, LOCARDI F, MARA D, et al. Switching on near-infrared light in lanthanide-doped CsPbCl3 perovskite nanocrystals [J]. Nanoscale, 2021, 13(17): 8118-8125. doi: 10.1039/d1nr00385bhttp://dx.doi.org/10.1039/d1nr00385b
ZHANG G Y, WANG D Y, LOU B B, et al. Efficient broadband near-infrared emission from lead-free halide double perovskite single crystal [J]. Angew. Chem., Int. Ed., 2022, 61(33): e202207454. doi: 10.1002/anie.202207454http://dx.doi.org/10.1002/anie.202207454
ZHANG W, ZHENG W, LI L Y, et al. Dual-band-tunable white-light emission from Bi3+/Te4+ emitters in perovskite-derivative Cs2SnCl6 microcrystals [J]. Angew. Chem., Int. Ed., 2022, 61(9): e202116085. doi: 10.1002/anie.202116085http://dx.doi.org/10.1002/anie.202116085
黄大誉, 连洪洲, 林君. 包含Mn2+离子的钙钛矿材料: 合成、发光性质与应用 [J]. 发光学报, 2023, 44(3): 413-436. doi: 10.37188/cjl.20220380http://dx.doi.org/10.37188/cjl.20220380
HUANG D Y, LIAN H Z, LIN J. Perovskites containing Mn2+: synthesis, luminescent properties and applications [J]. Chin. J. Lumin., 2023, 44(3): 413-436. (in Chinese). doi: 10.37188/cjl.20220380http://dx.doi.org/10.37188/cjl.20220380
SU B B, ZHOU G J, HUANG J L, et al. Mn2+-doped metal halide perovskites: structure, photoluminescence, and application [J]. Laser Photonics Rev., 2021, 15(1): 2000334. doi: 10.1002/lpor.202000334http://dx.doi.org/10.1002/lpor.202000334
HUANG Y X, PAN Y X, GUO S T, et al. Large spectral shift of Mn2+ emission due to the shrinkage of the crystalline host lattice of the hexagonal CsCdCl3 crystals and phase transition [J]. Inorg. Chem., 2022, 61(21): 8356-8365. doi: 10.1021/acs.inorgchem.2c00995http://dx.doi.org/10.1021/acs.inorgchem.2c00995
HE S S, QIANG Q P, LANG T C, et al. Highly stable orange-red long-persistent luminescent CsCdCl3∶Mn2+ perovskite crystal [J]. Angew. Chem., Int. Ed., 2022, 61(48): e202208937. doi: 10.1002/anie.202208937http://dx.doi.org/10.1002/anie.202208937
GU G Z, GU G X, WANG B F, et al. Cyan-rich sunlight-like spectra from Mn2+-doped CsCd(Cl1-yBry)3 perovskites with dual tunable emissions and high stability [J]. J. Mater. Chem. C, 2023, 11(21): 6989-6998.
TANG Z, LIU R Z, CHEN J S, et al. Highly efficient and ultralong afterglow emission with anti-thermal quenching from CsCdCl3∶Mn perovskite single crystals [J]. Angew. Chem., Int. Ed., 2022, 61(51): e202210975. doi: 10.1002/anie.202210975http://dx.doi.org/10.1002/anie.202210975
HAN J H, SAMANTA T, PARK Y M, et al. Effect of self-trapped excitons in the optical properties of manganese-alloyed hexagonal-phased metal halide perovskite [J]. Chem. Eng. J., 2022, 450: 138325. doi: 10.1016/j.cej.2022.138325http://dx.doi.org/10.1016/j.cej.2022.138325
BENSEKRANE M, GOLTZENÉ A, MEYER B, et al. Preferential ion location and structural stability in CsCdCl3 [J]. J. Phys. Chem. Solids, 1985, 46(4): 481-486. doi: 10.1016/0022-3697(85)90116-7http://dx.doi.org/10.1016/0022-3697(85)90116-7
ZHOU X Q, HAN K, WANG Y X, et al. Energy-trapping management in X-ray storage phosphors for flexible 3D imaging [J]. Adv. Mater., 2023, 35(16): e2212022. doi: 10.1002/adma.202212022http://dx.doi.org/10.1002/adma.202212022
BAHMANI JALALI H, PIANETTI A, ZITO J, et al. Cesium manganese bromide nanocrystal sensitizers for broadband Vis-to-NIR downshifting [J]. ACS Energy Lett., 2022, 7(5): 1850-1858. doi: 10.1021/acsenergylett.2c00311http://dx.doi.org/10.1021/acsenergylett.2c00311
0
Views
439
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution