MENG Yuan,ZHANG Yan,GUO Xiaoyang,et al.Luminescence Performance of Colloidal Quantum Dots Regulated by Band Edge Mode in One-dimensional Photonic Crystals[J].Chinese Journal of Luminescence,2023,44(09):1546-1551.
MENG Yuan,ZHANG Yan,GUO Xiaoyang,et al.Luminescence Performance of Colloidal Quantum Dots Regulated by Band Edge Mode in One-dimensional Photonic Crystals[J].Chinese Journal of Luminescence,2023,44(09):1546-1551. DOI: 10.37188/CJL.20230124.
Luminescence Performance of Colloidal Quantum Dots Regulated by Band Edge Mode in One-dimensional Photonic Crystals增强出版
One-dimensional photonic crystals (1DPCs) are artificially constructed periodic optical dielectric structures. 1DPCs can modulate the luminescent material mainly by defect mode modulation and band-edge mode modulation. 1DPC band-edge mode with a large density of photonic states can effectively modulate the luminescent properties of the luminescent material. In this paper, the fluorescence emission of colloidal quantum dot (CQD) materials coated on the surface of 1DPC is studied. By using different QD materials, different surface film thicknesses, and different angles for fluorescence detection, luminescence characteristics of the samples have been investigated. The results show that 1DPC band edge mode can effectively regulate the luminescence characteristics of CQD films located in the surface layer, effectively enhance the fluorescence emission intensity and narrow the emission linewidth. CQD materials controlled by 1DPC band edge mode have faster fluorescence radiation transition rate. The influence of 1DPC on the luminescent properties of CQD materials is helpful to optimize the design of the device structure, so as to greatly improve the performance of the luminescent devices.
关键词
带边态模式胶体量子点光致发光角分布一维光子晶体
Keywords
band edge modecolloidal quantum dotsphotoluminescenceangular distributionone-dimensional photonic crystal
references
YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett., 1987, 58(20): 2059-2062. doi: 10.1103/physrevlett.58.2059http://dx.doi.org/10.1103/physrevlett.58.2059
JOHN S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58(23): 2486-2489. doi: 10.1103/physrevlett.58.2486http://dx.doi.org/10.1103/physrevlett.58.2486
HIROTANI K, SHIRATORI R, BABA T. Si photonic crystal slow-light waveguides optimized through informatics technology [J]. Opt. Lett., 2021, 46(17): 4422-4425. doi: 10.1364/ol.436118http://dx.doi.org/10.1364/ol.436118
WANG F, SONG X Y, CHIO U F, et al. Angular-adjustable single-channel narrow-band filter based on one-dimensional photonic crystal heterostructure [J]. AIP Adv., 2021, 11(9): 095013. doi: 10.1063/5.0061986http://dx.doi.org/10.1063/5.0061986
LU T W, WU C C, LEE P T. 1D photonic crystal strain sensors [J]. ACS Photonics, 2018, 5(7): 2767-2772. doi: 10.1021/acsphotonics.8b00560http://dx.doi.org/10.1021/acsphotonics.8b00560
LI R Z, LI L, WANG B, et al. Preparation of quantum dot-embedded photonic crystal hydrogel and its application as fluorescence sensor for the detection of nitrite [J]. Nanomaterials, 2021, 11(11): 3126. doi: 10.3390/nano11113126http://dx.doi.org/10.3390/nano11113126
LI T, LIU G J, KONG H, et al. Recent advances in photonic crystal-based sensors [J]. Coord. Chem. Rev., 2023, 475: 214909. doi: 10.1016/j.ccr.2022.214909http://dx.doi.org/10.1016/j.ccr.2022.214909
GOODARZI A, GHANAATSHOAR M. Controlling light by light: photonic crystal-based coherent all-optical transistor [J]. J. Opt. Soc. Am. B, 2016, 33(8): 1594-1599. doi: 10.1364/josab.33.001594http://dx.doi.org/10.1364/josab.33.001594
LIU Z D, YANG Z W, LI B, et al. The energy transfer process under the photonic band gap modulation in light emitting materials [J]. Chin. J. Lumin., 2009, 30(2): 157-161. (in Chinese). doi: 10.1360/972009-495http://dx.doi.org/10.1360/972009-495
ALY A H, ELSAYED H A. Defect mode properties in a one-dimensional photonic crystal [J]. Phys. B, 2012, 407(1): 120-125. doi: 10.1016/j.physb.2011.09.137http://dx.doi.org/10.1016/j.physb.2011.09.137
NOH J, BENALCAZAR W A, HUANG S, et al. Topological protection of photonic mid-gap defect modes [J]. Nat. Photon., 2018, 12(7): 408-415. doi: 10.1038/s41566-018-0179-3http://dx.doi.org/10.1038/s41566-018-0179-3
DOWLING J P, SCALORA M, BLOEMER M J, et al. The photonic band edge laser: a new approach to gain enhancement [J]. J. Appl. Phys., 1994, 75(4): 1896-1899. doi: 10.1063/1.356336http://dx.doi.org/10.1063/1.356336
PUZZO D P, SCOTOGNELLA F, ZAVELANI-ROSSI M, et al. Distributed feedback lasing from a composite poly(phenylene vinylene)-nanoparticle one-dimensional photonic crystal [J]. Nano Lett., 2009, 9(12): 4273-4278. doi: 10.1021/nl902516thttp://dx.doi.org/10.1021/nl902516t
WANG D Q, YANG A K, WANG W J, et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices [J]. Nat. Nanotechnol., 2017, 12(9): 889-894. doi: 10.1038/nnano.2017.126http://dx.doi.org/10.1038/nnano.2017.126