浏览全部资源
扫码关注微信
1.厦门大学 材料学院, 福建省表界面工程与高性能材料重点实验室, 福建 厦门 361005
2.厦门大学 固体表面物理化学国家重点实验室, 福建 厦门 361005
Published:05 July 2023,
Received:08 May 2023,
Revised:21 May 2023,
移动端阅览
贺慰,潘鑫,杨汝军等.混合阴离子型化合物Ba2Gd(BO3)2Cl∶Ln的力致发光性能[J].发光学报,2023,44(07):1324-1333.
HE Wei,PAN Xin,YANG Rujun,et al.Mechanoluminescent Properties of Mixed-anion Compounds: Ba2Gd(BO3)2Cl∶Ln[J].Chinese Journal of Luminescence,2023,44(07):1324-1333.
贺慰,潘鑫,杨汝军等.混合阴离子型化合物Ba2Gd(BO3)2Cl∶Ln的力致发光性能[J].发光学报,2023,44(07):1324-1333. DOI: 10.37188/CJL.20230123.
HE Wei,PAN Xin,YANG Rujun,et al.Mechanoluminescent Properties of Mixed-anion Compounds: Ba2Gd(BO3)2Cl∶Ln[J].Chinese Journal of Luminescence,2023,44(07):1324-1333. DOI: 10.37188/CJL.20230123.
力致发光材料具有将机械刺激转变为光子发射的独特性能,因而被广泛应用于结构健康诊断、信息防伪、生物工程和电子皮肤等力学传感领域。然而,已报道的力致发光材料种类有限,且对于力致发光相关的载流子跃迁过程理解不够深入,极大地限制了其开发和应用。针对上述问题,本工作开发了新型混合阴离子型力致发光材料Ba
2
Gd(BO
3
)
2
Cl∶
Ln
(
Ln
= Eu,Tb,Dy,Sm,Nd),并探究了其光致发光性能与相关载流子跃迁过程。该研究通过X射线粉末衍射、扫描电子显微镜、多模式激发下的稳态和瞬态光谱技术研究了样品的结构形貌、光致发光与力致发光性能,提出了该材料可能的发光机制。研究结果表明,在280 nm光激发下,Ba
2
Gd⁃(BO
3
)
2
Cl∶Eu的发射峰位于536,594,613,625,654,695,710 nm,第一个宽峰和其余窄峰分别对应于Eu
2+
和Eu
3+
的发射,即掺杂的Eu呈现混合价态。而在机械作用下,Ba
2
Gd(BO
3
)
2
Cl∶Eu几乎只表现出Eu
3+
的橙红光发射,这可能是由于机械作用优先激发基质中的价带电子所致。此外,Eu的光致发光和力致发光最佳掺杂浓度均为2%。在0.23~1.55 mJ的冲击能下,力致发光强度与冲击能量呈线性关系。通过改变掺杂镧系元素的种类,实现了力致发光从可见光区域到近红外区域的拓展。这项工作为解释混合价态材料的力致发光机制提供了思路,并在应力传感领域呈现出潜在的应用价值。
Mechanoluminescent (ML) materials show unique energy conversion features from mechanical stimulation to photon emission, making them widely used in mechanical sensing fields such as structural health diagnosis, information anti-counterfeiting, bioengineering, and electronic skins. However, the species of reported ML materials are rare and the understanding on the ML-related charge carrier transportation is insufficient, which significantly limits its development and application. In this work, novel mixed-anion typed ML materials namely Ba
2
Gd(BO
3
)
2
Cl∶
Ln
(
Ln
=Eu, Tb, Dy, Sm, Nd) were developed, and the charge carrier transportation processes involved in photoluminescence (PL) and ML were examined. The crystal structure, morphology, PL/ML properties and mechanism of the samples were studied by X-ray diffraction, scanning electronic microscopy, and steady-state and transient spectral techniques under multi-mode excitation. The experimental results indicated that the emissions of Ba
2
Gd(BO
3
)
2
Cl∶Eu were peaked at 536, 594, 613, 625, 654, 695,710 nm under 280 nm excitation. The first broad emission and other sharp ones were assigned to Eu
2+
and Eu
3+
, respectively, showing a mixed valence states of doped Eu ions. Interestingly, the Ba
2
Gd(BO
3
)
2
Cl∶Eu almost exhibited orange emission from Eu
3+
under mechanical stimulation, which may be attributed to the preferential excitation of valence band electrons in the host under stress. This study also showed that the optimal doping Eu concentrations in Ba
2
Gd(BO
3
)
2
Cl for PL and ML were both at 2%, and the mechanoluminescent intensity was linearly related to the impact energy in the range of 0.23-1.55 mJ. By changing the type of doped lanthanide, we expanded the wavelengths of ML from visible to near infrared region. This work may provide a new way to understand the mechanism of ML in phosphors including mixed valence states and the materials presented in this work show promoting applications in the field of advanced stress sensing.
力致发光稀土掺杂发光材料混合阴离子化合物能量传递力致发光机理
mechanoluminescencerare earth doped luminescent materialsmixed-anion compoundenergy transfermechanoluminescent mechanism
PENG D F, JIANG Y, HUANG B L, et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset [J]. Adv. Mater., 2020, 32(16): 1907747-1-7. doi: 10.1002/adma.201907747http://dx.doi.org/10.1002/adma.201907747
WANG C F, MA R H, PENG D F, et al. Mechanoluminescent hybrids from a natural resource for energy-related applications [J]. InfoMat, 2021, 3(11): 1272-1284. doi: 10.1002/inf2.12250http://dx.doi.org/10.1002/inf2.12250
ZHANG J C, WANG X S, MARRIOTT G, et al. Trap-controlled mechanoluminescent materials [J]. Prog. Mater. Sci., 2019, 103: 678-742. doi: 10.1016/j.pmatsci.2019.02.001http://dx.doi.org/10.1016/j.pmatsci.2019.02.001
钱鑫, 苏萌, 李风煜, 等. 柔性可穿戴电子传感器研究进展 [J]. 化学学报, 2016, 74(7): 565-575. doi: 10.6023/a16030156http://dx.doi.org/10.6023/a16030156
QIAN X, SU M, LI F Y, et al. Research progress in flexible wearable electronic sensors [J]. Acta Chim. Sinica, 2016, 74(7): 565-575. (in Chinese). doi: 10.6023/a16030156http://dx.doi.org/10.6023/a16030156
QIAN X, CAI Z R, SU M, et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification [J]. Adv. Mater., 2018, 30(25): 1800291-1-6. doi: 10.1002/adma.201800291http://dx.doi.org/10.1002/adma.201800291
ZHUANG Y X, XIE R J. Mechanoluminescence rebrightening the prospects of stress sensing: a review [J]. Adv. Mater., 2021, 33(50): 2005925-1-33. doi: 10.1002/adma.202005925http://dx.doi.org/10.1002/adma.202005925
WANG X D, ZHANG H L, YU R M, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process [J]. Adv. Mater., 2015, 27(14): 2324-2331. doi: 10.1002/adma.201405826http://dx.doi.org/10.1002/adma.201405826
ZHAO Y, GAO W C, DAI K, et al. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing [J]. Adv. Mater., 2021, 33(45): 2102332-1-10. doi: 10.1002/adma.202102332http://dx.doi.org/10.1002/adma.202102332
唐艺倩, 雷键雄, 张晓明, 等. 无机可再生应力发光材料研究进展 [J]. 发光学报, 2021, 42(4): 404-418. doi: 10.37188/CJL.20200398http://dx.doi.org/10.37188/CJL.20200398
TANG Y Q, LEI J X, ZHANG X M, et al. Advances in recoverable mechanoluminescence in inorganic materials [J]. Chin. J. Lumin., 2021, 42(4): 404-418. (in Chinese). doi: 10.37188/CJL.20200398http://dx.doi.org/10.37188/CJL.20200398
杨秀霞, 涂东. 近红外应力发光材料研究进展 [J]. 发光学报, 2021, 42(2): 136-152. doi: 10.37188/CJL.20200364http://dx.doi.org/10.37188/CJL.20200364
YANG X X, TU D. Recent advances of near-infrared mechanoluminescent materials [J]. Chin. J. Lumin., 2021, 42(2): 136-152. (in Chinese). doi: 10.37188/CJL.20200364http://dx.doi.org/10.37188/CJL.20200364
CHAPMAN G N, WALTON A J. Triboluminescence of glasses and quartz [J]. J. Appl. Phys., 1983, 54(10): 5961-5965. doi: 10.1063/1.331773http://dx.doi.org/10.1063/1.331773
EDDINGSAAS N C, SUSLICK K S. Light from sonication of crystal slurries [J]. Nature, 2006, 444(7116): 163. doi: 10.1038/444163ahttp://dx.doi.org/10.1038/444163a
K’SINGAM L, DICKINSON J T, JENSEN L C. Fractoemission from failure of metal-glass interfaces [J]. J. Am. Ceram. Soc., 1985, 68(9): 510-514. doi: 10.1111/j.1151-2916.1985.tb15820.xhttp://dx.doi.org/10.1111/j.1151-2916.1985.tb15820.x
XU C N, WATANABE T, AKIYAMA M, et al. Direct view of stress distribution in solid by mechanoluminescence [J]. Appl. Phys. Lett., 1999, 74(17): 2414-2416. doi: 10.1063/1.123865http://dx.doi.org/10.1063/1.123865
XU C N, ZHENG X G, AKIYAMA M, et al. Dynamic visualization of stress distribution by mechanoluminescence image [J]. Appl. Phys. Lett., 2000, 76(2): 179-181. doi: 10.1063/1.125695http://dx.doi.org/10.1063/1.125695
JEONG S M, SONG S, LEE S K, et al. Mechanically driven light-generator with high durability [J]. Appl. Phys. Lett., 2013, 102(5): 051110-1-5. doi: 10.1063/1.4791689http://dx.doi.org/10.1063/1.4791689
XU S D, LIU T T, MU Y X, et al. An organic molecule with asymmetric structure exhibiting aggregation-induced emission, delayed fluorescence, and mechanoluminescence [J]. Angew. Chem. Int. Ed., 2015, 54(3): 874-878. doi: 10.1002/anie.201409767http://dx.doi.org/10.1002/anie.201409767
潘鑫, 庄逸熙, 梅乐夫, 等. 力致发光材料机制: 回顾、进展及挑战 [J]. 硅酸盐学报, 2022, 50(12): 3147-3164.
PAN X, ZHUANG Y X, MEI L F, et al. Mechanism of mechanoluminescent materials: review, progress and challenges [J]. J. Chin. Ceram. Soc., 2022, 50(12): 3147-3164. (in Chinese)
ZHANG J C, LONG Y Z, YAN X, et al. Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping [J]. Chem. Mater., 2016, 28(11): 4052-4057. doi: 10.1021/acs.chemmater.6b01550http://dx.doi.org/10.1021/acs.chemmater.6b01550
CHEN C J, ZHUANG Y X, TU D, et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO [J]. Nano Energy, 2020, 68: 104329-1-9. doi: 10.1016/j.nanoen.2019.104329http://dx.doi.org/10.1016/j.nanoen.2019.104329
KAGEYAMA H, HAYASHI K, MAEDA K, et al. Expanding frontiers in materials chemistry and physics with multiple anions [J]. Nat. Commun., 2018, 9(1): 772-1-15. doi: 10.1038/s41467-018-02838-4http://dx.doi.org/10.1038/s41467-018-02838-4
HIROSAKI N, XIE R J, KIMOTO K, et al. Characterization and properties of green-emitting β-SiAlON∶Eu2+ powder phosphors for white light-emitting diodes [J]. Appl. Phys. Lett., 2005, 86(21): 211905-1-3. doi: 10.1063/1.1935027http://dx.doi.org/10.1063/1.1935027
ISHIZAKA K, BAHRAMY M S, MURAKAWA H, et al. Giant rashba-type spin splitting in bulk BiTeI [J]. Nat. Mater., 2011, 10(7): 521-526. doi: 10.1038/nmat3051http://dx.doi.org/10.1038/nmat3051
IM W B, BRINKLEY S, HU J, et al. Sr2.975-xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting [J]. Chem. Mater., 2010, 22(9): 2842-2849. doi: 10.1021/cm100010zhttp://dx.doi.org/10.1021/cm100010z
LIN F Y, LI X Y, CHEN C J, et al. Modeling polyhedron distortion for mechanoluminescence in mixed-anion compounds RE2O2S∶Ln3+ [J]. Chem. Mater., 2022, 34(11): 5311-5319. doi: 10.1021/acs.chemmater.2c01230http://dx.doi.org/10.1021/acs.chemmater.2c01230
BAI Y Q, WANG F, ZHANG L Q, et al. Interfacial triboelectrification-modulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds [J]. Nano Energy, 2022, 96: 107075. doi: 10.1016/j.nanoen.2022.107075http://dx.doi.org/10.1016/j.nanoen.2022.107075
BAI Y Q, GUO X P, TIAN B R, et al. Self-charging persistent mechanoluminescence with mechanics storage and visualization activities [J]. Adv. Sci., 2022, 9(28): 2203249-1-9. doi: 10.1002/advs.202203249http://dx.doi.org/10.1002/advs.202203249
WANG C, YU Y, YUAN Y H, et al. Heartbeat-sensing mechanoluminescent device based on a quantitative relationship between pressure and emissive intensity [J]. Matter, 2020, 2(1): 181-193. doi: 10.1016/j.matt.2019.10.002http://dx.doi.org/10.1016/j.matt.2019.10.002
LI X, ZHENG Y T, MA R H, et al. Broadband multimodal emission in Sb-doped CaZnOS-layered semiconductors [J]. Sci. China Mater., 2022, 65(5): 1329-1336. doi: 10.1007/s40843-021-1844-4http://dx.doi.org/10.1007/s40843-021-1844-4
毛少辉, 陈冰, 郑元钿, 等. 基于应力发光材料的肢体运动压力可视化测量 [J]. 发光学报, 2021, 42(4): 397-403. doi: 10.37188/CJL.20210031http://dx.doi.org/10.37188/CJL.20210031
MAO S H, CHEN B, ZHENG Y T, et al. Dynamic limb-pressure visualization and measurement based on mechanoluminescent materials [J]. Chin. J. Lumin., 2021, 42(4): 397-403. (in Chinese). doi: 10.37188/CJL.20210031http://dx.doi.org/10.37188/CJL.20210031
芦博慧, 史慕杨, 逄增媛, 等. SrAl2O4∶Eu2+, Dy3+/Sr2MgSi2O7∶Eu2+, Dy3+/光转换剂红光发光材料的制备与表征 [J]. 中国稀土学报, 2022, 40(4): 591-601.
LU B H, SHI M Y, PANG Z Y, et al. Preparation and characterization of SrAl2O4∶Eu2+,Dy3+/Sr2MgSi2O7∶Eu2+,Dy3+/light conversion agent red-light emitting material [J]. J. Chin. Soc. Rare Earths, 2022, 40(4): 591-601. (in Chinese)
刘荣辉, 刘元红, 陈观通, 等. 稀土光功能材料发展现状及趋势 [J]. 中国稀土学报, 2021, 39(3): 338-349. doi: 10.11785/S1000-4343.20210302http://dx.doi.org/10.11785/S1000-4343.20210302
LIU R H, LIU Y H, CHEN G T, et al. Current situation and development trend on rare earth optical functional materials [J]. J. Chin. Soc. Rare Earths, 2021, 39(3): 338-349. (in Chinese). doi: 10.11785/S1000-4343.20210302http://dx.doi.org/10.11785/S1000-4343.20210302
HU T, GAO Y, MOLOKEEV M, et al. Non-stoichiometry in Ca2Al2SiO7 enabling mixed-valent europium toward ratiometric temperature sensing [J]. Sci. China Mater., 2019, 62(12): 1807-1814. doi: 10.1007/s40843-019-1202-xhttp://dx.doi.org/10.1007/s40843-019-1202-x
黄帅, 王金迪, 颜雨, 等. Sr2LiSiO4F的晶格位点工程调控实现混合价态Eu2+/3+应用于比例型温度传感 [J]. 发光学报, 2021, 42(12): 1829-1836. doi: 10.37188/cjl.20210299http://dx.doi.org/10.37188/cjl.20210299
HUANG S, WANG J D, YAN Y, et al. Crystal site engineering in Sr2LiSiO4F enabling mixed-valent europium toward ratiometric temperature sensing [J]. Chin. J. Lumin., 2021, 42(12): 1829-1836. (in Chinese). doi: 10.37188/cjl.20210299http://dx.doi.org/10.37188/cjl.20210299
TIAN B R, WANG Z F, SMITH A T, et al. Stress-induced color manipulation of mechanoluminescent elastomer for visualized mechanics sensing [J]. Nano Energy, 2021, 83: 105860. doi: 10.1016/j.nanoen.2021.105860http://dx.doi.org/10.1016/j.nanoen.2021.105860
HUANG Z F, CHEN B, REN B Y, et al. Smart mechanoluminescent phosphors: a review of strontium-aluminate-based materials, properties, and their advanced application technologies [J]. Adv. Sci., 2023, 10(3): 2204925. doi: 10.1002/advs.202204925http://dx.doi.org/10.1002/advs.202204925
XIA Z G, WANG X M, WANG Y X, et al. Synthesis, structure, and thermally stable luminescence of Eu2+-doped Ba2Ln-(BO3)2Cl (Ln = Y, Gd and Lu) host compounds [J]. Inorg. Chem., 2011, 50(20): 10134-10142. doi: 10.1021/ic200988whttp://dx.doi.org/10.1021/ic200988w
ZHANG L W, FU H B, ZHANG C, et al. Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst [J]. J. Phys. Chem. C, 2008, 112(8): 3126-3133. doi: 10.1021/jp074092rhttp://dx.doi.org/10.1021/jp074092r
KORTÜM G, BRAUN W, HERZOG C G. Principles and techniques of diffuse-reflectance spectroscopy [J]. Angew. Chem. Int. Ed., 1963, 2(7): 333-341. doi: 10.1002/anie.196303331http://dx.doi.org/10.1002/anie.196303331
ZHAO L, FAN F Y, MENG D D, et al. Bright multicolor emitting phosphors Ba2Gd(BO3)2Cl∶RE3+(RE = Dy, Sm, Tb, Eu) for multifunctional application [J]. J. Mater. Sci.: Mater. Electron., 2018, 29(10): 8465-8472. doi: 10.1007/s10854-018-8859-9http://dx.doi.org/10.1007/s10854-018-8859-9
JING H, GUO C F, ZhANG N M, et al. Effects of Eu3+ sites on photoluminescence in Ba2Ln(BO3)2Cl (Ln = Gd, Y) hosts [J]. ECS J. Solid State Sci., 2013, 2(1): R1-R4. doi: 10.1149/2.023301jsshttp://dx.doi.org/10.1149/2.023301jss
XIA Z G, ZHUANG J Q, LIAO L B, et al. Synthesis and luminescence properties of Ba2Gd(BO3)2Cl∶Eu2+ phosphor [J]. J. Electrochem. Soc., 2011, 158(11): J359-J362. doi: 10.1149/2.050111jeshttp://dx.doi.org/10.1149/2.050111jes
赵丽娟, 钟国柱, 郑陈玮, 等. Ho3+离子在SrS和ZnS基质中的电致发光 [J]. 光电子·激光, 1998, 9(4): 319-321.
ZHAO L J, ZHONG G Z, ZHENG C W, et al. Electroluminescence in SrS and ZnS hosts doped with Ho3+ ions [J]. J. Optoelectron.·Laser, 1998, 9(4): 319-321. (in Chinese)
WANG W X, WANG Z B, ZHANG J C, et al. Contact electrification induced mechanoluminescence [J]. Nano Energy, 2022, 94: 106920. doi: 10.1016/j.nanoen.2022.106920http://dx.doi.org/10.1016/j.nanoen.2022.106920
CHEN C J, ZHUANG Y X, LI X Y, et al. Achieving remote stress and temperature dual-modal imaging by double-lanthanide-activated mechanoluminescent materials [J]. Adv. Funct. Mater., 2021, 31(25): 2101567-1-8. doi: 10.1002/adfm.202101567http://dx.doi.org/10.1002/adfm.202101567
CHEN W W, ZHUANG Y X, CHEN C J, et al. Lanthanide-doped metal-organic frameworks with multicolor mechanoluminescence [J]. Sci. China Mater., 2021, 64(4): 931-941. doi: 10.1007/s40843-020-1505-yhttp://dx.doi.org/10.1007/s40843-020-1505-y
XIONG P X, HUANG B L, PENG D F, et al. Self-recoverable mechanically induced instant luminescence from Cr3+-doped LiGa5O8 [J]. Adv. Funct. Mater., 2021, 31(19): 2010685-1-11. doi: 10.1002/adfm.202010685http://dx.doi.org/10.1002/adfm.202010685
李婷, 杨云凌, 范雨婷, 等. 通过Pr3+掺杂SrZnOS实现应力发光颜色调控及其应力发光机理 [J]. 发光学报, 2021, 42(6): 818-828. doi: 10.37188/cjl.20210094http://dx.doi.org/10.37188/cjl.20210094
LI T, YANG Y L, FAN Y T, et al. Pr3+ doped SrZnOS to achieve tunable mechanoluminescence color and mechanoluminescence mechanism [J]. Chin. J. Lumin., 2021, 42(6): 818-828. (in Chinese). doi: 10.37188/cjl.20210094http://dx.doi.org/10.37188/cjl.20210094
0
Views
131
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution