浏览全部资源
扫码关注微信
1.成都大学 机械工程学院, 四川 成都 610106
2.成都理工大学 材料与化学化工学院, 四川 成都 610059
3.昆明理工大学 材料科学与工程学院, 云南省新材料制备与加工重点实验室, 云南 昆明 650093
4.交通运输部南海航海保障中心 北海航标处, 广西 北海 536000
Published:05 September 2023,
Received:07 May 2023,
Revised:16 May 2023,
扫 描 看 全 文
岳杨,郭龙超,刘昊哲等.双钙钛矿Ba2LuNbO6∶Tb3+闪烁体多模式X射线探测[J].发光学报,2023,44(09):1597-1605.
YUE Yang,GUO Longchao,LIU Haozhe,et al.Multimode X-ray Detection of Double Perovskite Ba2LuNbO6∶Tb3+ Scintillators[J].Chinese Journal of Luminescence,2023,44(09):1597-1605.
岳杨,郭龙超,刘昊哲等.双钙钛矿Ba2LuNbO6∶Tb3+闪烁体多模式X射线探测[J].发光学报,2023,44(09):1597-1605. DOI: 10.37188/CJL.20230121.
YUE Yang,GUO Longchao,LIU Haozhe,et al.Multimode X-ray Detection of Double Perovskite Ba2LuNbO6∶Tb3+ Scintillators[J].Chinese Journal of Luminescence,2023,44(09):1597-1605. DOI: 10.37188/CJL.20230121.
采用高温固相法制备了双钙钛矿结构的Ba
2
LuNbO
6
∶
x
Tb
3+
(
x
= 0.01,0.02,0.05,0.10,0.20)闪烁体材料,并系统地研究了其晶体结构、形貌和X射线激发的光学性能。研究表明,在X射线激发下,Ba
2
LuNbO
6
∶Tb
3+
的发射光谱主要由Tb
3+
的特征发射组成,其中最强发射峰位于545 nm处。X射线发射(RL)强度随Tb
3+
浓度的增加逐渐增大,当
x
= 0.1时发射强度达到最大值。此外,X射线辐照5 min后的热释光(TL)曲线显示该样品存在位于
T
1
(377 K)和
T
2
(460 K)的两个陷阱。其陷阱深度分别为0.754 eV和0.920 eV,这表明该材料具有潜在的X射线信息存储性能。因此,我们可通过加热或者980 nm激光二极管激发,有效诱导读出存储在深陷阱中的载流子,实现高亮度光激励发光(PSL)和热刺激发光(TSL)。基于此,由Ba
2
LuNbO
6
∶Tb
3+
与聚二甲基硅氧烷(PDMS)所制备的柔性闪烁体薄膜,在低X射线剂量辐照下表现出优异的X射线成像分辨率(12.5 lp/mm)以及延时成像特性。以上结果表明,所制备的Ba
2
LuNbO
6
∶0.1Tb
3+
在X射线探测和X射线信息存储方面具有潜在的应用前景。
In this paper, scintillator Ba
2
LuNbO
6
∶Tb
3+
(
x
= 0.01, 0.02, 0.05, 0.10, 0.20) phosphors with double perovskite structure were synthesized by the traditional high temperature solid state method. The crystal structure, morphology, and optical properties of the as-obtained Ba
2
LuNbO
6
∶Tb
3+
phosphors were investigated in detail. Under X-ray excitation, the radiation luminescence (RL) spectra of Ba
2
LuNbO
6
∶0.1Tb
3+
phosphor exhibit the characteristic emissions of Tb
3+
ions, and the strongest emission peak is dominantly located at 545 nm. The RL intensity gradually increases with the increased concentration of Tb
3+
ions, and achieves the optimized intensity when
x
= 0.1. In addition, the thermoluminescence (TL) curve of Ba
2
LuNbO
6
∶0.1Tb
3+
phosphors after X-ray irradiation for 5 min, manifest that there are two deep traps, located at
T
1
(377 K) and
T
2
(460 K), respectively. The corresponding trap depths are respectively calculated to be 0.754 eV and 0.920 eV, which indicates that the as-explored sample performs a potential optical storage performance. Moreover, the captured carriers captured by deep traps could be released induced by thermal stimulus and the 980 nm laser, and then resulting in bright photo-stimulated luminescence (PSL) and thermal-stimulated luminescence (TSL) behaviors, respectively. Furthermore, the flexible scintillator film encapsulated with Ba
2
LuNbO
6
∶Tb
3+
phosphor and PDMS shows high X-ray imaging resolution(12.5 lp/mm) and time-delay imaging characteristics at low radiation dose, demonstrating that the as-fabricated Ba
2
LuNbO
6
∶0.1Tb
3+
phosphors exhibit potential application prospect in X-ray detection and X-ray information storage.
闪烁体Tb3+离子X射线探测Ba2LuNbO6
scintillatorsTb3+ ionsX-ray detectionBa2LuNbO6
BÜCHELE P, RICHTER M, TEDDE S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors [J]. Nat. Photonics, 2015, 9(12): 843-848. doi: 10.1038/nphoton.2015.216http://dx.doi.org/10.1038/nphoton.2015.216
CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators [J]. Nature, 2018, 561(7721): 88-93. doi: 10.1038/s41586-018-0451-1http://dx.doi.org/10.1038/s41586-018-0451-1
CAO F, YU D J, MA W B, et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept [J]. ACS Nano, 2019, 14(5): 5183-5193. doi: 10.1021/acsnano.9b06114http://dx.doi.org/10.1021/acsnano.9b06114
彭庆朋, 季涛, 王玮, 等. ZnS量子点微晶玻璃用于X射线高分辨率成像 [J]. 硅酸盐学报, 2022, 50(11): 2934-2940.
PENG Q P, JI T, WANG W, et al. Transparent medium embedded with ZnS quantum dots for X-ray imaging [J]. J. Chin. Ceramic Soc., 2022, 50(11): 2934-2940. (in Chinese)
KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging [J]. Nature, 2017, 550(7674): 87-91. doi: 10.1038/nature24032http://dx.doi.org/10.1038/nature24032
LIU J Y, SHABBIR B, WANG C J, et al. Flexible, printable soft‐X‐ray detectors based on all‐inorganic perovskite quantum dots [J]. Adv. Mater., 2019, 31(30): 1901644-1-8. doi: 10.1002/adma.201970214http://dx.doi.org/10.1002/adma.201970214
ZHANG H, YANG Z, ZHOU M, et al. Reproducible X‐ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure [J]. Adv. Mater., 2021, 33(40): 2102529-1-7. doi: 10.1002/adma.202102529http://dx.doi.org/10.1002/adma.202102529
KANG Z T, ZHANG Y L, MENKARA H, et al. CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging [J]. Appl. Phys. Lett., 2011, 98(18): 181914-1-3. doi: 10.1063/1.3589366http://dx.doi.org/10.1063/1.3589366
JUNG I D, CHO M K, LEE S M, et al. Flexible Gd2O2S∶Tb scintillators pixelated with polyethylene microstructures for digital X-ray image sensors [J]. J. Micromech. Microeng., 2009, 19(1): 015014-1-10. doi: 10.1088/0960-1317/19/1/015014http://dx.doi.org/10.1088/0960-1317/19/1/015014
HU Q S, DENG Z Z, HU M C, et al. X-ray scintillation in lead-free double perovskite crystals [J]. Sci. China Chem., 2018, 61(12): 1581-1586. doi: 10.1007/s11426-018-9308-2http://dx.doi.org/10.1007/s11426-018-9308-2
TIAN B R, WANG Z F, SMITH A T, et al. Stress-induced color manipulation of mechanoluminescent elastomer for visualized mechanics sensing [J]. Nano Energy, 2021, 83: 105860. doi: 10.1016/j.nanoen.2021.105860http://dx.doi.org/10.1016/j.nanoen.2021.105860
ZHAO B, CHEN Y Q, XUE Y, et al. Tunable emission color and anti-thermal-quenching behaviors in niobates for high-sensitive optical thermometry [J]. Mater. Des., 2023, 227: 111802. doi: 10.1016/j.matdes.2023.111802http://dx.doi.org/10.1016/j.matdes.2023.111802
XU L, WANG X D, WANG L H, et al. Design of a novel La3Si6N11∶Ce3+ phosphor-in-glass film for high power laser lighting: luminous efficiency toward 200 lm·W-1 [J]. ACS Sustainable Chem. Eng., 2022, 10(38): 12817-12825. doi: 10.1021/acssuschemeng.2c03897http://dx.doi.org/10.1021/acssuschemeng.2c03897
夏天, 曹望和, 罗昔贤, 等. 燃烧法合成Ln2O2S∶RE3+(Ln=Gd, La; RE=Eu, Tb)X射线荧光粉及发光性能 [J]. 发光学报, 2005, 26(2): 194-198.
XIA T, CAO W H, LUO X X, et al. Combustion synthesis and luminescence characteristic of Ln2O2S∶RE3+(Ln=Gd, La; RE=Eu, Tb) X-ray phosphors [J]. Chin. J. Lumin., 2005, 26(2): 194-198. (in Chinese)
王振家, 熊光楠, 滕枫, 等. BaFCl∶Eu2+X射线存储机制的探讨 [J]. 发光学报, 1995, 16(1): 20-26.
WANG Z J, XIONG G N, TENG F, et al. Studying of X-ray storage process in BaFCl∶Eu2+ [J]. Chin. J. Lumin., 1995, 16(1): 20-26. (in Chinese)
FAN Y, JIN X F, WANG M Y, et al. Multimode dynamic photoluminescent anticounterfeiting and encryption based on a dynamic photoluminescent material [J]. Chem. Eng. J., 2020, 393: 124799-1-8. doi: 10.1016/j.cej.2020.124799http://dx.doi.org/10.1016/j.cej.2020.124799
WANG C L, JIN Y H, ZHANG J X, et al. Linear charging-discharging of an ultralong UVA persistent phosphor for advanced optical data storage and wide-wavelength-range detector [J]. Chem. Eng. J., 2023, 453: 139558. doi: 10.1016/j.cej.2022.139558http://dx.doi.org/10.1016/j.cej.2022.139558
ZHANG H, YANG Z, ZHAO L, et al. Long persistent luminescence from all-inorganic perovskite nanocrystals [J]. Adv. Opt. Mater., 2020, 8(18): 2000585-1-8. doi: 10.1002/adom.202000585http://dx.doi.org/10.1002/adom.202000585
LI Y, XU S, ZHANG Q, et al. Excitation wavelength-dependent multi-emission in Sb3+/Bi3+/Er3+ codoped perovskite toward optical anti-counterfeiting and information storage [J]. J. Alloys Compd., 2023, 940: 168925. doi: 10.1016/j.jallcom.2023.168925http://dx.doi.org/10.1016/j.jallcom.2023.168925
LI J Y, XIAO J W, LIN T F, et al. Lanthanide doping enabled multimodal luminescence in layered lead-free double perovskite Cs4MnBi2Cl12 [J]. J. Mater. Chem. C, 2022, 10(19): 7626-7632. doi: 10.1039/d2tc01024khttp://dx.doi.org/10.1039/d2tc01024k
CHEN L, WU Y, HUO H Y, et al. Study on the fluorescence properties of micron-submicron-nano BaFBr∶Eu2+ phosphors [J]. New J. Chem., 2020, 44(30): 13118-13124. doi: 10.1039/d0nj02446ehttp://dx.doi.org/10.1039/d0nj02446e
LYU T S, DORENBOS P, XIONG P X, et al. LiTaO3∶Bi3+, Tb3+, Ga3+, Ge4+: a smart perovskite with high charge carrier storage capacity for X-ray imaging, stress sensing, and non-real-time recording [J]. Adv. Funct. Mater., 2022, 32(39): 2206024-1-14. doi: 10.1002/adfm.202206024http://dx.doi.org/10.1002/adfm.202206024
ZHUANG Y X, CHEN D R, CHEN W J, et al. X-ray-charged bright persistent luminescence in NaYF4∶Ln3+@NaYF4 nanoparticles for multidimensional optical information storage [J]. Light: Sci. Appl., 2021, 10(1): 132-1-10. doi: 10.1038/s41377-021-00575-whttp://dx.doi.org/10.1038/s41377-021-00575-w
SHANNON R D. Revised effective Ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Cryst. Sect. A, 1976, 32(5): 751-767. doi: 10.1107/s0567739476001551http://dx.doi.org/10.1107/s0567739476001551
YANG Y S, WANG K Z, YAN D P. Lanthanide doped coordination polymers with tunable afterglow based on phosphorescence energy transfer [J]. Chem. Commun., 2017, 53(55): 7752-7755. doi: 10.1039/c7cc04356bhttp://dx.doi.org/10.1039/c7cc04356b
MEDIĆ M, RISTIĆ Z, KUZMAN S, et al. Luminescence of Mn4+ activated Li4Ti5O12 [J]. J. Lumin., 2020, 228: 117646-1-8. doi: 10.1016/j.jlumin.2020.117646http://dx.doi.org/10.1016/j.jlumin.2020.117646
FU C J, HU Y H, WANG Y H, et al. Luminescent properties of the Sr2.97-xBaxMgSi2O8∶Eu<math id="M4"><msubsup><mrow/><mrow><mn mathvariant="normal">0.01</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48312922&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48312940&type=3.640666483.72533321,Dy<math id="M5"><msubsup><mrow/><mrow><mn mathvariant="normal">0.02</mn></mrow><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48312945&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48312943&type=3.640666483.72533321 with different Sr/Ba ratio [J]. J. Alloys Compd., 2010, 502(2): 423-428. doi: 10.1016/j.jallcom.2010.04.188http://dx.doi.org/10.1016/j.jallcom.2010.04.188
YUAN W H, PANG R, WANG S W, et al. Enhanced blue-light excited cyan-emitting persistent luminescence of BaLu2Al2Ga2SiO12∶Ce3+,Bi3+ phosphors for AC-LEDs via defect modulation [J]. Light: Sci. Appl., 2022, 11(1): 184-1-13. doi: 10.1038/s41377-022-00868-8http://dx.doi.org/10.1038/s41377-022-00868-8
ZHANG X, XU X H, HE Q L, et al. Significant improvement of photo-stimulated luminescence of Ba4(Si3O8)2∶Eu2+ by co-doping with Tm3+ [J]. ECS J. Solid State Sci. Technol., 2013, 2(11): R225-R229. doi: 10.1149/2.010311jsshttp://dx.doi.org/10.1149/2.010311jss
WANG T, XU X H, ZHOU D C, et al. Effect of defect distribution on the optical storage properties of strontium gallates with a low-dimensional chain structure [J]. Inorg. Chem., 2016, 55(2): 894-901. doi: 10.1021/acs.inorgchem.5b02401http://dx.doi.org/10.1021/acs.inorgchem.5b02401
0
Views
91
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution