浏览全部资源
扫码关注微信
河南大学 材料学院, 教育部特种功能材料重点实验室, 河南 开封 475004
Published:05 July 2023,
Received:03 May 2023,
Revised:21 May 2023,
扫 描 看 全 文
梁珊珊,王允其,张涵等.Ti3C2Tx掺杂PEDOT∶PSS提升蓝色量子点发光二极管性能[J].发光学报,2023,44(07):1315-1323.
LIANG Shanshan,WANG Yunqi,ZHANG Han,et al.Boosting Performance of Blue Quantum-dot Light-emitting Diodes by Ti3C2Tx doped PEDOT∶PSS[J].Chinese Journal of Luminescence,2023,44(07):1315-1323.
梁珊珊,王允其,张涵等.Ti3C2Tx掺杂PEDOT∶PSS提升蓝色量子点发光二极管性能[J].发光学报,2023,44(07):1315-1323. DOI: 10.37188/CJL.20230119.
LIANG Shanshan,WANG Yunqi,ZHANG Han,et al.Boosting Performance of Blue Quantum-dot Light-emitting Diodes by Ti3C2Tx doped PEDOT∶PSS[J].Chinese Journal of Luminescence,2023,44(07):1315-1323. DOI: 10.37188/CJL.20230119.
空穴注入效率低是制约蓝色量子点发光二极管(QLEDs)性能的关键因素。通过提升PEDOT∶PSS的电导率来增加器件的空穴注入效率是提升蓝色QLEDs性能的重要方向。由于二维材料碳化钛(Ti
3
C
2
T
x
)具有较高的导电性、丰富的表面官能团及良好的亲水性等优点,有望通过掺杂提高PEDOT∶PSS的电导率。本文采用HCl/LiF刻蚀法制备了单层Ti
3
C
2
T
x
纳米片,并将其掺杂到PEDOT∶PSS中制备了蓝色QLEDs器件。结果表明,当Ti
3
C
2
T
x
的掺杂量为0.1%时,器件的最大外量子效率和电流效率分别达到15.2%和14.42 cd·A
-1
,与参比器件的9.09%和7.68 cd·A
-1
相比,分别提高了67%和87%。Ti
3
C
2
T
x
纳米片对蓝色QLEDs器件性能提升有两个作用,一方面诱导PEDOT的构型从苯态到喹啉态转变,形成紧密堆积的大尺寸PEDOT纳米晶,并将这些导电纳米晶连接起来,构筑了新的电荷传输通道,提高了复合层的电导率;另一方面,通过掺杂实现了PEDOT∶PSS功函数的调节,提升了蓝色QLEDs器件的空穴注入效率。
Low hole injection efficiency is a key factor limiting the performance of blue quantum dot light-emitting diodes (QLEDs). Improving the conductivity of PEDOT∶PSS to increase the hole injection efficiency of devices is of great importance for improving the performance of blue QLEDs.Because of the high conductivity, abundant surface functional groups, and good hydrophilicity of the two-dimensional material titanium carbide (Ti
3
C
2
T
x
), the conductivity of PEDOT∶PSS could be improved by using exfoliated Ti
3
C
2
T
x
dopant. Here, the HCl/LiF etching method was employed to prepare single-layer Ti
3
C
2
T
x
nanosheets and dope into PEDOT∶PSS for the fabrication of blue QLEDs devices. As a result, the blue QLEDs device using PEDOT∶PSS-0.1%Ti
3
C
2
T
x
thin film as the hole injection layer presented the EQE and current efficiency of 15.2% and 14.42 cd·A
-1
, respectively. Compared to the value of a reference device of 9.09% and 7.68 cd·A
-1
, an great improvement of 67% and 87% were achieved, respectively. Ti
3
C
2
T
x
nanosheets play a dual role in enhancing the performance of blue QLEDs. The Ti
3
C
2
T
x
nanosheets induce a conformational change of PEDOT from a benzoid state to a quinoid state, forming densely packed large-sized PEDOT nanocrystals and connecting these conductive nanocrystals to construct new charge transfer pathways, which increase the conductivity of the composite layer. In addition, Ti
3
C
2
T
x
doping realizes the work function regulation of PEDOT∶PSS, improving the hole injection efficiency of blue QLED devices.
Ti3C2Tx纳米片蓝色量子点发光二极管空穴注入能级调控
Ti3C2Tx nanosheetsblue light-emitting diodehole injectionenergy level regulation
DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99. doi: 10.1038/nature13829http://dx.doi.org/10.1038/nature13829
DAI X L, DENG Y Z, PENG X G, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization [J]. Adv. Mater., 2017, 29(14): 1607022-1-22. doi: 10.1002/adma.201607022http://dx.doi.org/10.1002/adma.201607022
SUN Y Z, JIANG Y B, SUN X W, et al. Beyond OLED: efficient quantum dot light-emitting diodes for display and lighting application [J]. Chem. Rec., 2019, 19(8): 1729-1752. doi: 10.1002/tcr.201800191http://dx.doi.org/10.1002/tcr.201800191
QI H, WANG S J, JIANG X H, et al. Research progress and challenges of blue light-emitting diodes based on Ⅱ⁃Ⅵ semiconductor quantum dots [J]. J. Mater. Chem. C, 2020, 8(30): 10160-10173. doi: 10.1039/d0tc02272ahttp://dx.doi.org/10.1039/d0tc02272a
TIAN D D, MA H G, HUANG G G, et al. A review on quantum dot light-emitting diodes: from materials to applications [J]. Adv. Opt. Mater., 2023, 11(2): 2201965-1-18. doi: 10.1002/adom.202201965http://dx.doi.org/10.1002/adom.202201965
MASHFORD B S, STEVENSON M, POPOVIC Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection [J]. Nat. Photon., 2013, 7(5): 407-412. doi: 10.1038/nphoton.2013.70http://dx.doi.org/10.1038/nphoton.2013.70
FANG Y F, BAI P L, LI J Y, et al. Highly efficient red quantum dot light-emitting diodes by balancing charge injection and transport [J]. ACS Appl. Mater. Interfaces, 2022, 14(18): 21263-21269. doi: 10.1021/acsami.2c04369http://dx.doi.org/10.1021/acsami.2c04369
YANG Y X, ZHENG Y, CAO W R, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures [J]. Nat. Photon., 2015, 9(4): 259-266. doi: 10.1038/nphoton.2015.36http://dx.doi.org/10.1038/nphoton.2015.36
SHEN H B, GAO Q, ZHANG Y B, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency [J]. Nat. Photon., 2019, 13(3): 192-197. doi: 10.1038/s41566-019-0364-zhttp://dx.doi.org/10.1038/s41566-019-0364-z
WANG F Z, SUN W D, LIU P, et al. Achieving balanced charge injection of blue quantum dot light-emitting diodes through transport layer doping strategies [J]. J. Phys. Chem. Lett., 2019, 10(5): 960-965. doi: 10.1021/acs.jpclett.9b00189http://dx.doi.org/10.1021/acs.jpclett.9b00189
ZHAO Y S, CHEN L X, WU J L, et al. Composite hole transport layer consisting of high-mobility polymer and small molecule with deep-lying HOMO level for efficient quantum dot light-emitting diodes [J]. IEEE Electron Device Lett., 2020, 41(1): 80-83. doi: 10.1109/led.2019.2953088http://dx.doi.org/10.1109/led.2019.2953088
王志斌, 朱晓东, 贾浩然, 等. 蓝光钙钛矿发光二极管: 从材料制备到器件优化 [J]. 发光学报, 2020, 41(8): 879-898. doi: 10.37188/fgxb20204108.0879http://dx.doi.org/10.37188/fgxb20204108.0879
WANG Z B, ZHU X D, JIA H R, et al. Blue perovskite light-emitting diodes: from material preparation to device optimization [J]. Chin. J. Lumin., 2020, 41(8): 879-898. (in Chinese). doi: 10.37188/fgxb20204108.0879http://dx.doi.org/10.37188/fgxb20204108.0879
LIN Q L, WANG L, LI Z H, et al. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process [J]. ACS Photonics, 2018, 5(3): 939-946. doi: 10.1021/acsphotonics.7b01195http://dx.doi.org/10.1021/acsphotonics.7b01195
TAN Y Z, ZHANG W D, XIAO X T, et al. Enhancing hole injection by electric dipoles for efficient blue InP QLEDs [J]. Appl. Phys. Lett., 2021, 119(22): 221105-1-5. doi: 10.1063/5.0071508http://dx.doi.org/10.1063/5.0071508
QU X W, ZHANG N, CAI R, et al. Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer [J]. Appl. Phys. Lett., 2019, 114(7): 071101-1-5. doi: 10.1063/1.5087102http://dx.doi.org/10.1063/1.5087102
SHI H, LIU C C, JIANG Q L, et al. Effective approaches to improve the electrical conductivity of PEDOT∶PSS: a review [J]. Adv. Electron. Mater., 2015, 1(4): 1500017-1-16. doi: 10.1002/aelm.201500017http://dx.doi.org/10.1002/aelm.201500017
CAMERON J, SKABARA P J. The damaging effects of the acidity in PEDOT∶PSS on semiconductor device performance and solutions based on non-acidic alternatives [J]. Mater. Horiz., 2020, 7(7): 1759-1772. doi: 10.1039/c9mh01978bhttp://dx.doi.org/10.1039/c9mh01978b
OUYANG J, CHU C W, CHEN F C, et al. High-conductivity poly(3, 4-ethylenedioxythiophene)∶poly(styrene sulfonate) film and its application in polymer optoelectronic devices [J]. Adv. Funct. Mater., 2005, 15(2): 203-208. doi: 10.1002/adfm.200400016http://dx.doi.org/10.1002/adfm.200400016
LI Y F, FAN X, SHEN C, et al. Charge balance in red QLEDs for high efficiency and stability via ionic liquid doping [J]. Adv. Funct. Mater., 2022, 32(32): 2203641-1-11. doi: 10.1002/adfm.202203641http://dx.doi.org/10.1002/adfm.202203641
YE Y X, ZHENG X R, CHEN D S, et al. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes [J]. J. Phys. Chem. Lett., 2020, 11(12): 4649-4654. doi: 10.1021/acs.jpclett.0c01323http://dx.doi.org/10.1021/acs.jpclett.0c01323
CHEN L, WANG S J, LI D D, et al. Simultaneous improvement of efficiency and lifetime of quantum dot light-emitting diodes with a bilayer hole injection layer consisting of PEDOT∶PSS and solution-processed WO3 [J]. ACS Appl. Mater. Interfaces, 2018, 10(28): 24232-24241. doi: 10.1021/acsami.8b00770http://dx.doi.org/10.1021/acsami.8b00770
DE IZARRA A, PARK S, LEE J, et al. Ionic liquid designed for PEDOT∶PSS conductivity enhancement [J]. J. Am. Chem. Soc., 2018, 140(16): 5375-5384. doi: 10.1021/jacs.7b10306http://dx.doi.org/10.1021/jacs.7b10306
张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展 [J]. 材料导报, 2021, 35(3) 3204-3208.
ZHANG Y C, XU H T, ZHAO C H. Research progress of PEDOT∶PSS hole transport layer and its modification for organic solar cells [J]. Mater. Rep., 2021, 35(3): 3204-3208. (in Chinese)
LINGSTEDT L V, GHITTORELLI M, LU H, et al. Effect of DMSO solvent treatments on the performance of PEDOT∶PSS based organic electrochemical transistors [J]. Adv. Electron. Mater., 2019, 5(3): 1800804-1-8. doi: 10.1002/aelm.201800804http://dx.doi.org/10.1002/aelm.201800804
WU J L, CHEN L X, TAN X W, et al. Large performance enhancement in all-solution-processed, full-color, inverted quantum-dot light-emitting diodes using graphene oxide doped hole injection layer [J]. J. Phys. Chem. C, 2020, 124(21): 11617-11624. doi: 10.1021/acs.jpcc.0c02277http://dx.doi.org/10.1021/acs.jpcc.0c02277
VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes) [J]. Science, 2021, 372(6547): eabf1581-1-1. doi: 10.1126/science.abf1581http://dx.doi.org/10.1126/science.abf1581
ALI I, DIN M FUD, GU Z G. MXenes thin films: from fabrication to their applications [J]. Molecules, 2022, 27(15): 4925-1-38. doi: 10.3390/molecules27154925http://dx.doi.org/10.3390/molecules27154925
HOU C L, YU H Z. Modifying the nanostructures of PEDOT∶PSS/Ti3C2Tx composite hole transport layers for highly efficient polymer solar cells [J]. J. Mater. Chem. C, 2020, 8(12): 4169-4180. doi: 10.1039/d0tc00075bhttp://dx.doi.org/10.1039/d0tc00075b
WANG S J, GUO Y M, FENG D D, et al. Bandgap tunable Zn1-xMgxO thin films as electron transport layers for high performance quantum dot light-emitting diodes [J]. J. Mater. Chem. C, 2017, 5(19): 4724-4730. doi: 10.1039/c7tc00453bhttp://dx.doi.org/10.1039/c7tc00453b
SHEN H B, LIN Q L, CAO W R, et al. Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots [J]. Nanoscale, 2017, 9(36): 13583-13591. doi: 10.1039/c7nr04953fhttp://dx.doi.org/10.1039/c7nr04953f
CAI G F, CIOU J H, LIU Y Z, et al. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices [J]. Sci. Adv., 2019, 5(7): eaaw7956. doi: 10.1126/sciadv.aaw7956http://dx.doi.org/10.1126/sciadv.aaw7956
LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2MXene flakes [J]. Adv. Electron. Mater., 2016, 2(12): 1600255-1-19. doi: 10.1002/aelm.201600255http://dx.doi.org/10.1002/aelm.201600255
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chem. Mater., 2017, 29(18): 7633-7644. doi: 10.1021/acs.chemmater.7b02847http://dx.doi.org/10.1021/acs.chemmater.7b02847
LIPATOV A, GOAD A, LOES M J, et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes [J]. Matter, 2021, 4(4): 1413-1427. doi: 10.1016/j.matt.2021.01.021http://dx.doi.org/10.1016/j.matt.2021.01.021
GAO M, TU Y F, TIAN D D, et al. Alleviating electron over-injection for efficient cadmium-free quantum dot light-emitting diodes toward deep-blue emission [J]. ACS Photonics, 2022, 9(4): 1400-1408. doi: 10.1021/acsphotonics.2c00155http://dx.doi.org/10.1021/acsphotonics.2c00155
LI X Y, ZHAO Y B, FAN F J, et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination [J]. Nat. Photon., 2018, 12(3): 159-164. doi: 10.1038/s41566-018-0105-8http://dx.doi.org/10.1038/s41566-018-0105-8
ZHANG S S, TU T T, LI T Y, et al. 3D MXene/PEDOT∶PSS composite aerogel with a controllable patterning property for highly sensitive wearable physical monitoring and robotic tactile sensing [J]. ACS Appl. Mater. Interfaces, 2022, 14(20): 23877-23887. doi: 10.1021/acsami.2c03350http://dx.doi.org/10.1021/acsami.2c03350
李蛟, 刘俊成, 高从堦. PEDOT苯/醌式主链结构变化的分子动力学模拟 [J]. 材料科学与工艺, 2011, 19(2): 118-121. doi: 10.11951/j.issn.1005-0299.20110224http://dx.doi.org/10.11951/j.issn.1005-0299.20110224
LI J, LIU J C, GAO C J. Molecular dynamics simulations on the benzoid/quinoid change of PEDOT chain [J]. Mater. Sci. Technol., 2011, 19(2): 118-121. (in Chinese). doi: 10.11951/j.issn.1005-0299.20110224http://dx.doi.org/10.11951/j.issn.1005-0299.20110224
0
Views
86
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution