浏览全部资源
扫码关注微信
1.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2.兴县经开区铝镁新材料研发有限公司, 山西 兴县 033600
3.山西浙大新材料与化工研究院, 山西 太原 030000
Published:05 October 2023,
Received:28 April 2023,
Revised:24 May 2023,
扫 描 看 全 文
卢璐,董建华,池淑瑞等.基于山梨醇钝化的绿光多晶薄膜钙钛矿发光二极管[J].发光学报,2023,44(10):1833-1841.
LU Lu,DONG Jianhua,CHI Shurui,et al.Green Light-emitting Diodes Based on Sorbitol-passivated Perovskite Polycrystalline Films[J].Chinese Journal of Luminescence,2023,44(10):1833-1841.
卢璐,董建华,池淑瑞等.基于山梨醇钝化的绿光多晶薄膜钙钛矿发光二极管[J].发光学报,2023,44(10):1833-1841. DOI: 10.37188/CJL.20230110.
LU Lu,DONG Jianhua,CHI Shurui,et al.Green Light-emitting Diodes Based on Sorbitol-passivated Perovskite Polycrystalline Films[J].Chinese Journal of Luminescence,2023,44(10):1833-1841. DOI: 10.37188/CJL.20230110.
金属卤化物钙钛矿具有高的缺陷容忍度、可调的发光峰位与较窄半峰宽等优异光电特性,在开发高性能发光二极管方面展现出巨大潜力。钙钛矿发光二极管的低成本溶液制备有利于其应用于显示与照明领域的大规模商业化生产,但溶液成膜过程中伴随着有机溶剂的挥发,成膜时易形成缺陷态,不利于高性能器件的实现。在钙钛矿前驱体溶液中引入添加剂是一种简单有效的钙钛矿缺陷钝化策略,其中,路易斯碱被证明是非常有效的添加剂之一。基于此,本文提出在前驱体溶液中引入小分子路易斯碱添加剂(山梨醇)来钝化薄膜缺陷,并制备了钙钛矿发光二极管。研究证明,山梨醇的引入可以明显改善薄膜质量,且山梨醇浓度为0.3 mol·L
-1
时,制备的器件实现了最佳电致发光性能,如最大外量子效率和亮度分别达到6.71%和7 654 cd·m
-2
,且器件展现出较好的光谱稳定性与重复性。本工作对改善多晶薄膜成膜质量和提高钙钛矿发光二极管器件方面具有重要意义。
Metal halide perovskite has excellent photoelectric characteristics such as high defect tolerance, tunable peak position and narrow full width at half maximum, which exhibits great potential in the development of high-performance light-emitting diodes. Perovskite light-emitting diodes can be applied to the large-scale commercial production in the display and lighting fields due to low-cost solution preparation. However, the adverse defects are formed in the process of film formation accompanied by the organic solvent volatilization, which are not conducive to the realization of high performance devices. Introducing additive in perovskite precursor solution is a simple and effective strategy to passivate defects. It is reported that the Lewis base is one of the effective additives. Based on analysis, in this work, we propose to introduce a small molecule Lewis base additive (sorbitol) into the precursor solution to passivate the defects of perovskite film, and fabricate perovskite light-emitting diodes. The experiment results show that the introduction of sorbitol can significantly improve the film quality. And when the concentration of sorbitol is 0.3 mol·L
-1
, the corresponding device achieves the best electroluminescence performance with the maximum external quantum efficiency and luminance of 6.71% and 7 654 cd·m
-2
, respectively. In addition, the resulting device also shows good spectral stability and repeatability. This work is of great significance to improve the polycrystalline film forming quality and boosting the performance of perovskite light-emitting diodes.
多晶钙钛矿发光二极管山梨醇缺陷钝化
polycrystalline perovskitelight-emitting diodessorbitoldefect passivation
QUAN L N, DE ARQUER F P G, SABATINI R P, et al. Perovskites for light emission [J]. Adv. Mater., 2018, 30(45): 1801996-1-19. doi: 10.1002/adma.201801996http://dx.doi.org/10.1002/adma.201801996
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149http://dx.doi.org/10.1038/nnano.2014.149
KIM J S, HEO J M, PARK G S, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes [J]. Nature, 2022, 611(7937): 688-694. doi: 10.1038/s41586-022-05304-whttp://dx.doi.org/10.1038/s41586-022-05304-w
JIANG J, CHU Z M, YIN Z G, et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations [J]. Adv. Mater., 2022, 34(36): 2204460-1-8. doi: 10.1002/adma.202204460http://dx.doi.org/10.1002/adma.202204460
JIANG Y Z, SUN C J, XU J, et al. Synthesis-on-substrate of quantum dot solids [J]. Nature, 2022, 612(7941): 679-684. doi: 10.1038/s41586-022-05486-3http://dx.doi.org/10.1038/s41586-022-05486-3
CHEN Z M, LI Z C, CHEN Z, et al. Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12% [J]. Joule, 2021, 5(2): 456-466. doi: 10.1016/j.joule.2020.12.008http://dx.doi.org/10.1016/j.joule.2020.12.008
LIU X K, XU W D, BAI S, et al. Metal halide perovskites for light-emitting diodes [J]. Nat. Mater., 2021, 20(1): 10-21. doi: 10.1038/s41563-020-0784-7http://dx.doi.org/10.1038/s41563-020-0784-7
FAKHARUDDIN A, GANGISHETTY M K, ABDI-JALEBI M, et al. Perovskite light-emitting diodes [J]. Nat. Electron., 2022, 5(4): 203-216. doi: 10.1038/s41928-022-00745-7http://dx.doi.org/10.1038/s41928-022-00745-7
王建浦, 彭其明. 钙钛矿发光: 多学科深度交叉融合 [J]. 发光学报, 2020, 41(11): 1335-1338. doi: 10.37188/cjl.20200321http://dx.doi.org/10.37188/cjl.20200321
WANG J P, PENG Q M. Perovskite luminescence: in-depth multidisciplinary integration [J]. Chin. J. Lumin., 2020, 41(11): 1335-1338. (in Chinese). doi: 10.37188/cjl.20200321http://dx.doi.org/10.37188/cjl.20200321
ZHANG L Q, YANG X L, JIANG Q, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes [J]. Nat. Commun., 2017, 8: 15640-1-8. doi: 10.1038/ncomms15640http://dx.doi.org/10.1038/ncomms15640
VOZNYY O, SUTHERLAND B R, IP A H, et al. Engineering charge transport by heterostructuring solution-processed semiconductors [J]. Nat. Rev. Mater., 2017, 2(5): 17026-1-10. doi: 10.1038/natrevmats.2017.26http://dx.doi.org/10.1038/natrevmats.2017.26
ZOU Y T, YUAN Z C, BAI S, et al. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability [J]. Mater. Today Nano, 2019, 5: 100028-1-13. doi: 10.1016/j.mtnano.2019.100028http://dx.doi.org/10.1016/j.mtnano.2019.100028
PENG X F, YANG X H, LIU D T, et al. Targeted distribution of passivator for polycrystalline perovskite light-emitting diodes with high efficiency [J]. ACS Energy Lett., 2021, 6(12): 4187-4194. doi: 10.1021/acsenergylett.1c01753http://dx.doi.org/10.1021/acsenergylett.1c01753
ZHANG Z H, GAO Y F, LI Z C, et al. Marked passivation effect of naphthalene-1, 8-dicarboximides in high-performance perovskite solar cells [J]. Adv. Mater., 2021, 33(31): 2008405-1-11. doi: 10.1002/adma.202008405http://dx.doi.org/10.1002/adma.202008405
LI C W, WANG X M, BI E B, et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells [J]. Science, 2023, 379(6633): 690-694. doi: 10.1126/science.ade3970http://dx.doi.org/10.1126/science.ade3970
FANG Z B, CHEN W J, SHI Y L, et al. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20% [J]. Adv. Funct. Mater., 2020, 30(12): 1909754-1-9. doi: 10.1002/adfm.201909754http://dx.doi.org/10.1002/adfm.201909754
LI M B, SUN R M, CHANG J X, et al. Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells [J]. Nat. Commun., 2023, 14(1): 573-1-11. doi: 10.1038/s41467-023-36224-6http://dx.doi.org/10.1038/s41467-023-36224-6
YANG X L, ZHANG X W, DENG J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation [J]. Nat. Commun., 2018, 9(1): 570-1-8. doi: 10.1038/s41467-018-02978-7http://dx.doi.org/10.1038/s41467-018-02978-7
CAI F L, YAN Y, YAO J X, et al. Ionic additive engineering toward high‐efficiency perovskite solar cells with reduced grain boundaries and trap density [J]. Adv. Funct. Mater., 2018, 28(34): 1801985-1-9. doi: 10.1002/adfm.201801985http://dx.doi.org/10.1002/adfm.201801985
董建华, 卢璐, 金旭东, 等. 葡萄糖作钝化剂的绿光多晶薄膜钙钛矿发光二极管 [J]. 发光学报, 2023, 44(2): 328-336. doi: 10.37188/CJL.20220297http://dx.doi.org/10.37188/CJL.20220297
DONG J H, LU L, JIN X D, et al. Green polycrystalline perovskite films with glucose as passivator for light-emitting diodes [J]. Chin. J. Lumin., 2023, 44(2): 328-336. (in Chinese). doi: 10.37188/CJL.20220297http://dx.doi.org/10.37188/CJL.20220297
WANG Z B, CHENG T, WANG F Z, et al. Morphology engineering for high-performance and multicolored perovskite light-emitting diodes with simple device structures [J]. Small, 2016, 12(32): 4412-4420. doi: 10.1002/smll.201601785http://dx.doi.org/10.1002/smll.201601785
WANG Z B, LUO Z, ZHAO C Y, et al. Efficient and stable pure green all-inorganic perovskite CsPbBr3 light-emitting diodes with a solution-processed NiOx interlayer [J]. J. Phys. Chem. C, 2017, 121(50): 28132-28138. doi: 10.1021/acs.jpcc.7b11518http://dx.doi.org/10.1021/acs.jpcc.7b11518
CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J]. Science, 2015, 350(6265): 1222-1225. doi: 10.1126/science.aad1818http://dx.doi.org/10.1126/science.aad1818
WANG S Y, TAN L G, ZHOU J J, et al. Over 24% efficient MA-free CsxFA1-xPbX3 perovskite solar cells [J]. Joule, 2022, 6(6): 1344-1356. doi: 10.1016/j.joule.2022.05.002http://dx.doi.org/10.1016/j.joule.2022.05.002
AN Q Z, PAULUS F, BECKER-KOCH D, et al. Small grains as recombination hot spots in perovskite solar cells [J]. Matter, 2021, 4(5): 1683-1701. doi: 10.1016/j.matt.2021.02.020http://dx.doi.org/10.1016/j.matt.2021.02.020
BU T L, LI J, LI H Y, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules [J]. Science, 2021, 372(6548): 1327-1332. doi: 10.1126/science.abh1035http://dx.doi.org/10.1126/science.abh1035
FENG W J, LIN K B, LI W Q, et al. Efficient all-inorganic perovskite light-emitting diodes enabled by manipulating the crystal orientation [J]. J. Mater. Chem. A, 2021, 9(17): 11064-11072. doi: 10.1039/d1ta00093dhttp://dx.doi.org/10.1039/d1ta00093d
NIE W Y, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains [J]. Science, 2015, 347(6221): 522-525. doi: 10.1126/science.aaa0472http://dx.doi.org/10.1126/science.aaa0472
LI G R, RIVAROLA F W R, DAVIS N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method [J]. Adv. Mater., 2016, 28(18): 3528-3534. doi: 10.1002/adma.201600064http://dx.doi.org/10.1002/adma.201600064
REN M, CAO S, ZHAO J L, et al. Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes [J]. Nano⁃Micro Lett., 2021, 13(1): 163-1-36. doi: 10.1007/S40820-021-00685-5http://dx.doi.org/10.1007/S40820-021-00685-5
黎振超, 陈梓铭, 邹广锐兴, 等. 有机添加剂在金属卤化钙钛矿发光二极管中的应用 [J]. 物理学报, 2019, 68(15): 158505-1-22. doi: 10.7498/aps.68.20190307http://dx.doi.org/10.7498/aps.68.20190307
LI Z C, CHEN Z M, ZOU G R X, et al. Applications of organic additives in metal halide perovskite light-emitting diodes [J]. Acta Phys. Sinica, 2019, 68(15): 158505-1-22. (in Chinese). doi: 10.7498/aps.68.20190307http://dx.doi.org/10.7498/aps.68.20190307
LI Y M, LI Y S, SHI J J, et al. High quality perovskite crystals for efficient film photodetectors induced by hydrolytic insulating oxide substrates [J]. Adv. Funct. Mater., 2018, 28(10): 1705220-1-10. doi: 10.1002/adfm.201705220http://dx.doi.org/10.1002/adfm.201705220
LI Y M, CHEN Z J, YU B C, et al. Efficient, stable formamidinium-cesium perovskite solar cells and minimodules enabled by crystallization regulation [J]. Joule, 2022, 6(3): 676-689. doi: 10.1016/j.joule.2022.02.003http://dx.doi.org/10.1016/j.joule.2022.02.003
LE CORRE V M, DUIJNSTEE E A, TAMBOULI OEL, et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements [J]. ACS Energy Lett., 2021, 6(3): 1087-1094. doi: 10.1021/acsenergylett.0c02599http://dx.doi.org/10.1021/acsenergylett.0c02599
WU W W, XU H F, LIU G Z, et al. Introduction of 4-hydroxybenzaldehyde as interface modifier with multidimensional defects passivation effect for high-performance perovskite solar cells [J]. Appl. Surf. Sci., 2021, 570: 151259-1-9. doi: 10.1016/j.apsusc.2021.151259http://dx.doi.org/10.1016/j.apsusc.2021.151259
SONG J N, HU Q, ZHANG Q Z, et al. Manipulating the crystallization kinetics by additive engineering toward high-efficient photovoltaic performance [J]. Adv. Funct. Mater., 2021, 31(14): 2009103-1-9. doi: 10.1002/adfm.202009103http://dx.doi.org/10.1002/adfm.202009103
ZHAO C Y, WU W P, ZHAN H M, et al. Phosphonate/phosphine oxide dyad additive for efficient perovskite light‐emitting diodes [J]. Angew. Chem. Int. Ed., 2022, 61(13): e202117374-1-5. doi: 10.1002/anie.202117374http://dx.doi.org/10.1002/anie.202117374
ZHENG X P, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations [J]. Nat. Energy, 2017, 2(7): 17102-1-9. doi: 10.1038/nenergy.2017.102http://dx.doi.org/10.1038/nenergy.2017.102
DEQUILETTES D W, KOCH S, BURKE S, et al. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation [J]. ACS Energy Lett., 2016, 1(2): 438-444. doi: 10.1021/acsenergylett.6b00236http://dx.doi.org/10.1021/acsenergylett.6b00236
BOHN B J, TONG Y, GRAMLICH M, et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair [J]. Nano Lett., 2018, 18(8): 5231-5238. doi: 10.1021/acs.nanolett.8b02190http://dx.doi.org/10.1021/acs.nanolett.8b02190
XIONG Z H, LAN L K, WANG Y Y, et al. Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23% [J]. ACS Energy Lett., 2021, 6(11): 3824-3830. doi: 10.1021/acsenergylett.1c01763http://dx.doi.org/10.1021/acsenergylett.1c01763
MA D X, LIN K B, DONG Y T, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs [J]. Nature, 2021, 599(7886): 594-598. doi: 10.1038/s41586-021-03997-zhttp://dx.doi.org/10.1038/s41586-021-03997-z
0
Views
183
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution