浏览全部资源
扫码关注微信
1.郑州大学材料科学与工程学院 郑州市先进能源催化功能材料制备技术重点实验室, 河南 郑州 450001
2.郑州大学(洛阳校区) 材料科学与工程学院, 河南 洛阳 471099
3.洛阳理工学院 智能制造学院, 河南 洛阳 471023
Published:05 October 2023,
Received:25 April 2023,
Revised:16 May 2023,
移动端阅览
张文睿,贺璐璐,王兆武等.Mn4+激活氟化物强零声子线发射红光荧光粉[J].发光学报,2023,44(10):1733-1750.
ZHANG Wenrui,HE Lulu,WANG Zhaowu,et al.Mn4+-doped Red-emitting Fluoride Phosphors with Intense Zero Phonon Line[J].Chinese Journal of Luminescence,2023,44(10):1733-1750.
张文睿,贺璐璐,王兆武等.Mn4+激活氟化物强零声子线发射红光荧光粉[J].发光学报,2023,44(10):1733-1750. DOI: 10.37188/CJL.20230107.
ZHANG Wenrui,HE Lulu,WANG Zhaowu,et al.Mn4+-doped Red-emitting Fluoride Phosphors with Intense Zero Phonon Line[J].Chinese Journal of Luminescence,2023,44(10):1733-1750. DOI: 10.37188/CJL.20230107.
Mn
4+
激活荧光粉实现强零声子线(Zero phonon line,ZPL)发光将会使其发射光谱中短波红光增强,且常伴随荧光寿命缩短。本文对Mn
4+
激活氟化物红光荧光粉中具有强ZPL发光特征的28种荧光粉的组成、制备、晶体结构与荧光性质进行综述。发现了一些规律:(1)这28种荧光粉可以根据Mn
4+
与被取代离子是否为等价取代及被取代离子在基质中是否形成六配位分为四类。(2)[MnF
6
]配位八面体畸变是Mn
4+
实现强ZPL发光的必要条件。(3)大部分Mn
4+
激活强ZPL氟化物荧光粉中Mn
4+
掺杂为对3+离子的不等价取代;在等价取代且被取代离子为六配位时,获得强ZPL发射的空间群主要为
P
321和
P
3
m
1等三方晶系空间群。(4)Mn
4+
在绝大多数强ZPL发射氟化物荧光粉中ZPL都弱于
ν
6
声子伴峰,仅在Na
2
TiF
6
∶Mn
4+
等5种荧光粉中ZPL强于
ν
6
峰。(5)其ZPL波长都在617~628 nm之间,多数为620 nm。(6)ZPL与Stokes
ν
6
峰的强度比不仅与荧光粉的化学组成有关;对于同一化学组成的荧光粉,该比值也随制备方法的改变而变化。
The enhancement of the zero phonon line (ZPL) emission of the red⁃emitting Mn
4+
⁃activated phosphors
will lead to the enhancement of the short wavelength emission in the whole luminescence spectrum
and usually the luminescence will decay faster. The Mn
4+
-activated fluoride phosphors with intense ZPL, 28 kinds in total, with intense zero phonon line (ZPL) emission were reviewed, on aspects of the chemical composition, preparation method, crystal structure and photoluminescence property. Several rules were found: (1) The Mn
4+
-activated fluoride phosphors with intense ZPL can be classified into four categories based on whether Mn
4+
is equivalent with the cation being substituted and whether the substituted cations form octahedral coordination structures in the matrix. (2) Distortion of the [MnF
6
] coordination octahedra after doping is necessary to achieve intense ZPL. (3) For most of the fluoride phosphors with intense ZPL, the Mn
4+
doping is heteroequivalent, substituting a cation with 3+ valence state; when the substituted ion is tetravalent and six-coordinated, the crystal structure achieving intense ZPL emission is mainly in trigonal crystal system with space group such as
P
321 and
P
3
m
1. (4) For most of the fluoride phosphors with intense ZPL, the intensity of ZPL is weaker than that of Stokes
ν
6
phonon sideband emission (except for five kinds like Na
2
TiF
6
∶Mn
4+
in which the ZPL is more intense than the
ν
6
peak). (5) Their ZPLs are located within 617-628 nm, mainly at 620 nm. (6) The ZPL/
ν
6
(Stokes) intensity ratio is not only dependent on the chemical composition of the phosphor, but also varies with the preparation method for a specific phosphor.
Mn4+红光荧光粉零声子线氟化物
Mn4+red-emitting phosphorzero phonon linefluoride
HU T, LIN H, CHENG Y, et al. A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn4+-activated oxyfluoride Na2WO2F4 [J]. J. Mater. Chem. C, 2017, 5(40): 10524-10532. doi: 10.1039/c7tc03655hhttp://dx.doi.org/10.1039/c7tc03655h
WU W L, FANG M H, ZHOU W L, et al. High color rendering index of Rb2GeF6∶Mn4+ for light-emitting diodes [J]. Chem. Mater., 2017, 29(3): 935-939.
屈巧, 张文睿, 贺璐璐, 等. Mn4+激活氟氧化物强零声子线发射红光荧光粉 [J]. 发光学报, 2023, 44(5): 786-800. doi: 10.37188/cjl.20220405http://dx.doi.org/10.37188/cjl.20220405
QU Q, ZHANG W R, HE L L, et al. Mn4+-doped red-emitting oxyfluoride phosphors with intense zero phonon line [J]. Chin. J. Lumin., 2023, 44(5): 786-800. (in Chinese). doi: 10.37188/cjl.20220405http://dx.doi.org/10.37188/cjl.20220405
姬海鹏. Mn4+离子光谱学基础 [J]. 发光学报, 2022, 43(8): 1175-1187. doi: 10.37188/cjl.20220102http://dx.doi.org/10.37188/cjl.20220102
JI H P. Basic knowledge for understanding spectroscopic property of Mn4+ ion [J]. Chin. J. Lumin., 2022, 43(8): 1175-1187. (in Chinese). doi: 10.37188/cjl.20220102http://dx.doi.org/10.37188/cjl.20220102
ADACHI S. Review—Mn4+-activated red and deep red-emitting phosphors [J]. ECS J. Solid State Sci. Technol., 2020, 9(1): 016001-1-35. doi: 10.1149/2.0022001jsshttp://dx.doi.org/10.1149/2.0022001jss
ARAI Y, TAKAHASHI T, ADACHI S. Photoluminescent properties of K2SnF6·H2O∶Mn4+ red phosphor [J]. Opt. Mater., 2010, 32(9): 1095-1101. doi: 10.1016/j.optmat.2010.03.004http://dx.doi.org/10.1016/j.optmat.2010.03.004
XU Y K, ADACHI S. Properties of Mn4+-activated hexafluorotitanate phosphors [J]. J. Electrochem. Soc., 2011, 158(3): J58-J65. doi: 10.1149/1.3530793http://dx.doi.org/10.1149/1.3530793
LIU Y M, WANG T M, TAN Z R, et al. Novel emission bands of Na2TiF6∶Mn4+ phosphors induced by the cation exchange method [J]. Ceram. Int., 2019, 45(5): 6243-6249. doi: 10.1016/j.ceramint.2018.12.104http://dx.doi.org/10.1016/j.ceramint.2018.12.104
WANG Z L, LIU Y, ZHOU Y Y, et al. Red-emitting phosphors Na2XF6∶Mn4+ (X=Si, Ge, Ti) with high colour-purity for warm white-light-emitting diodes [J]. RSC Adv., 2015, 5(72): 58136-58140. doi: 10.1039/c5ra10568dhttp://dx.doi.org/10.1039/c5ra10568d
FANG M H, WU W L, JIN Y, et al. Control of luminescence by tuning of crystal symmetry and local structure in Mn4+-activated narrow band fluoride phosphors [J]. Angew. Chem. Int. Ed., 2018, 57(7): 1797-1801. doi: 10.1002/anie.201708814http://dx.doi.org/10.1002/anie.201708814
XU Y K, ADACHI S. Properties of Na2SiF6∶Mn4+ and Na2GeF6∶Mn4+ red phosphors synthesized by wet chemical etching [J]. J. Appl. Phys., 2009, 105(1): 013525-1-6. doi: 10.1063/1.3056375http://dx.doi.org/10.1063/1.3056375
WANG Z W, JI H P, ZHANG Z T, et al. Solution growth of millimeter-scale Na2SiF6 single crystals for Mn4+-doping as red phosphor [J]. J. Am. Ceram. Soc., 2021, 104(10): 5077-5085. doi: 10.1111/jace.17739http://dx.doi.org/10.1111/jace.17739
ADACHI S, ABE H, KASA R, et al. Synthesis and properties of hetero-dialkaline hexafluorosilicate red phosphor KNaSiF6∶Mn4+ [J]. J. Electrochem. Soc., 2011, 159(2): J34-J37. doi: 10.1149/2.064202jeshttp://dx.doi.org/10.1149/2.064202jes
JIN Y, FANG M H, GRINBERG M, et al. Narrow red emission band fluoride phosphor KNaSiF6∶Mn4+ for warm white light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11194-11203. doi: 10.1021/acsami.6b01905http://dx.doi.org/10.1021/acsami.6b01905
HONG F, YANG L, XU H P, et al. A red-emitting Mn4+ activated phosphor with controlled morphology and two-dimensional luminescence nanofiber film: Synthesis and application for high-performance warm white light-emitting diodes (WLEDs) [J]. J. Alloys Compd., 2019, 808: 151551-1-11. doi: 10.1016/j.jallcom.2019.07.263http://dx.doi.org/10.1016/j.jallcom.2019.07.263
JIANG C Y, PENG M Y, SRIVASTAVA A M, et al. Mn4+-doped heterodialkaline fluorogermanate red phosphor with high quantum yield and spectral luminous efficacy for warm-white-light-emitting device application [J]. Inorg. Chem., 2018, 57(23): 14705-14714. doi: 10.1021/acs.inorgchem.8b02488http://dx.doi.org/10.1021/acs.inorgchem.8b02488
ADACHI S. Investigation on anomalous thermal quenching of Mn4+ luminescence in A2XF6∶Mn4+ [J]. ECS J. Solid State Sci. Technol., 2021, 10(7): 076007. doi: 10.1149/2162-8777/ac1549http://dx.doi.org/10.1149/2162-8777/ac1549
JIN Y M, LIU R H, CHEN G T, et al. Synthesis and photoluminescence properties of octahedral K2(Ge, Si)F6∶Mn4+ red phosphor for white LED [J]. J. Rare Earths, 2016, 34(12): 1173-1178. doi: 10.1016/s1002-0721(16)60150-3http://dx.doi.org/10.1016/s1002-0721(16)60150-3
DENG T T, SONG E H, SU J, et al. Stable narrowband red emission in fluorotellurate KTeF5∶Mn4+ via Mn4+ noncentral-site occupation [J]. J. Mater. Chem. C, 2018, 6(16): 4418-4426. doi: 10.1039/c8tc00689jhttp://dx.doi.org/10.1039/c8tc00689j
TAN H Y, RONG M Z, ZHOU Y Y, et al. Luminescence behaviour of Mn4+ ions in seven coordination environments of K3ZrF7 [J]. Dalton Trans., 2016, 45(23): 9654-9660. doi: 10.1039/c6dt01693fhttp://dx.doi.org/10.1039/c6dt01693f
SONG E H, WANG J Q, YE S, et al. Room-temperature synthesis and warm-white LED applications of Mn4+ ion doped fluoroaluminate red phosphor Na3AlF6∶Mn4+ [J]. J. Mater. Chem. C, 2016, 4(13): 2480-2487. doi: 10.1039/c6tc00502khttp://dx.doi.org/10.1039/c6tc00502k
HONG F, XU H P, YANG L, et al. Mn4+ nonequivalent-doped Al3+-based cryolite high-performance warm WLED red phosphors [J]. New J. Chem., 2019, 43(37): 14859-14871. doi: 10.1039/c9nj03607ehttp://dx.doi.org/10.1039/c9nj03607e
SONG E H, WANG J Q, SHI J H, et al. Highly efficient and thermally stable K3AlF6∶Mn4+ as a red phosphor for ultra-high-performance warm white light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 8805-8812. doi: 10.1021/acsami.7b00749http://dx.doi.org/10.1021/acsami.7b00749
WANG L Y, SONG E H, DENG T T, et al. Luminescence properties and warm white LED application of a ternary-alkaline fluoride red phosphor K2NaAlF6∶Mn4+ [J]. Dalton Trans., 2017, 46(30): 9925-9933. doi: 10.1039/c7dt02036hhttp://dx.doi.org/10.1039/c7dt02036h
WANG Y J, ZHOU Y Y, MING H, et al. Luminescence enhancement of Mn4+-activated fluorides via a heterovalent co-doping strategy for monochromatic multiplexing [J]. ACS Appl. Mater. Interfaces, 2021, 13(43): 51255-51265. doi: 10.1021/acsami.1c17135http://dx.doi.org/10.1021/acsami.1c17135
ZHU Y W, HUANG L, ZOU R, et al. Hydrothermal synthesis, morphology and photoluminescent properties of an Mn4+-doped novel red fluoride phosphor elpasolite K2LiAlF6 [J]. J. Mater. Chem. C, 2016, 4(24): 5690-5695. doi: 10.1039/c6tc01366jhttp://dx.doi.org/10.1039/c6tc01366j
ZHU Y W, LIU Y, HUANG L, et al. Optimized photoluminescence of red phosphor K2LiAlF6∶Mn4+ synthesized by a cation-exchange method [J]. Sci. China Technol. Sci., 2017, 60(10): 1458-1464. doi: 10.1007/s11431-017-9033-4http://dx.doi.org/10.1007/s11431-017-9033-4
LIU X Y, XU H P, ZHANG Y X, et al. Green synthesis, luminescent properties and application for WLED of flower-like K2LiAlF6∶Mn4+ phosphor [J]. Opt. Mater., 2021, 119: 111392-1-9. doi: 10.1016/j.optmat.2021.111392http://dx.doi.org/10.1016/j.optmat.2021.111392
ZHOU Q, LIANG Z B, SHI D X, et al. Double sites occupancy of Mn4+ in Cs2NaAlF6 with enhanced photoluminescence for white light-emitting diodes [J]. J. Alloys Compd., 2020, 832: 154884-1-9. doi: 10.1016/j.jallcom.2020.154884http://dx.doi.org/10.1016/j.jallcom.2020.154884
MING H, ZHANG J F, LIU L L, et al. Luminescent properties of a Cs3AlF6∶Mn4+ red phosphor for warm white light-emitting diodes [J]. ECS J. Solid State Sci. Technol., 2018, 7(9): R149-R155. doi: 10.1149/2.0271809jsshttp://dx.doi.org/10.1149/2.0271809jss
ZHU M M, PAN Y X, XI L Q, et al. Design, preparation, and optimized luminescence of a dodec-fluoride phosphor Li3Na3Al2F12∶Mn4+ for warm WLED applications [J]. J. Mater. Chem. C, 2017, 5(39): 10241-10250. doi: 10.1039/c7tc03805dhttp://dx.doi.org/10.1039/c7tc03805d
MING H, LIU S F, LIU L L, et al. Highly regular, uniform K3ScF6∶Mn4+ phosphors: facile synthesis, microstructures, photoluminescence properties, and application in light-emitting diode devices [J]. ACS Appl. Mater. Interfaces, 2018, 10(23): 19783-19795. doi: 10.1021/acsami.8b01885http://dx.doi.org/10.1021/acsami.8b01885
WANG Y J, YU C K, ZHOU Y Y, et al. Mn4+ doped narrowband red phosphors with short fluorescence lifetime and high color stability for fast-response backlight display application [J]. J. Alloys Compd., 2021, 855: 157347. doi: 10.1016/j.jallcom.2020.157347http://dx.doi.org/10.1016/j.jallcom.2020.157347
LI H, LIU Y, TANG S, et al. Luminescence properties of Mn4+ with high 2Eg level energy in the polyfluoride Na3Li3Sc2F12 [J]. Dalton Trans., 2020, 49(33): 11613-11617. doi: 10.1039/d0dt02389bhttp://dx.doi.org/10.1039/d0dt02389b
ZHOU Q, WAN J, ZHOU Y Y, et al. Ultraintense zero-phonon line from a Mn4+ red-emitting phosphor for high-quality backlight display applications [J]. Inorg. Chem., 2021, 60(24): 19197-19205. doi: 10.1021/acs.inorgchem.1c02938http://dx.doi.org/10.1021/acs.inorgchem.1c02938
DENG T T, SONG E H, ZHOU Y Y, et al. Stable narrowband red phosphor K3GaF6∶Mn4+ derived from hydrous K2GaF5⁃(H2O) and K2MnF6 [J]. J. Mater. Chem. C, 2017, 5(37): 9588-9596. doi: 10.1039/c7tc03116ehttp://dx.doi.org/10.1039/c7tc03116e
GAO J, ZHU H M, LI R F, et al. Moisture-resistant and highly efficient narrow-band red-emitting fluoride phosphor K2NaGaF6∶Mn4+ for warm white LED application [J]. J. Mater. Chem. C, 2019, 7(26): 7906-7914. doi: 10.1039/c9tc02445jhttp://dx.doi.org/10.1039/c9tc02445j
YUAN J H, YANG X Y, LI T, et al. A strong zero phonon line of Mn4+ in a red-emitting phosphor BaGaF5∶Mn4+ [J]. J. Lumin., 2022, 247: 118881-1-5. doi: 10.1016/j.jlumin.2022.118881http://dx.doi.org/10.1016/j.jlumin.2022.118881
ZHU M M, PAN Y X, HUANG Y Q, et al. Designed synthesis, morphology evolution and enhanced photoluminescence of a highly efficient red dodec-fluoride phosphor, Li3Na3Ga2F12∶Mn4+, for warm WLEDs [J]. J. Mater. Chem. C, 2018, 6(3): 491-499. doi: 10.1039/c7tc04878ehttp://dx.doi.org/10.1039/c7tc04878e
LI J, YANG X Y, LI T, et al. Mn4+ non-equivalent doped fluoride phosphors with a short fluorescence decay time for backlighting [J]. Dalton Trans., 2022, 51(6): 2512-2516. doi: 10.1039/d1dt04191fhttp://dx.doi.org/10.1039/d1dt04191f
JANSEN T, BAUR F, JÜSTEL T. Red emitting K2NbF7∶Mn4+ and K2TaF7∶Mn4+ for warm-white LED applications [J]. J. Lumin., 2017, 192: 644-652. doi: 10.1016/j.jlumin.2017.07.061http://dx.doi.org/10.1016/j.jlumin.2017.07.061
MING H, ZHANG J F, LIU S F, et al. A green synthetic route to K2NbF7∶Mn4+ red phosphor for the application in warm white LED devices [J]. Opt. Mater., 2018, 86: 352-359. doi: 10.1016/j.optmat.2018.10.031http://dx.doi.org/10.1016/j.optmat.2018.10.031
WU J, LI Z Y, LUO L, et al. A facile two-step synthesis of an efficient narrow-band red-emitting K2NbF7∶Mn4+ phosphor for warm white LEDs and its thermal quenching behavior [J]. J. Alloys Compd., 2021, 863: 158058-1-8. doi: 10.1016/j.jallcom.2020.158058http://dx.doi.org/10.1016/j.jallcom.2020.158058
PANG G, HONG F, LIU X Y, et al. Moisture-resistant Nb-based fluoride K2NbF7∶Mn4+ and oxyfluoride phosphor K3(NbOF5)(HF2)∶Mn4+: Synthesis, improved luminescence performance and application in warm white LEDs [J]. Dalton Trans., 2021, 50(46): 17290-17300. doi: 10.1039/d1dt03341ghttp://dx.doi.org/10.1039/d1dt03341g
汪正良, 李童, 袁俊恒. 白光LED用K2TaF7∶Mn4+红色发光晶体发光性能研究 [J]. 云南民族大学学报(自然科学版), 2021, 30(5): 488-492, 499.
WANG Z L, LI T, YUAN J H. Luminescence of red-emitting K2TaF7∶Mn4+ crystals for white light-emitting diodes [J]. J. Yunnan Minzu Univ.(Nat. Sci. Ed.), 2021, 30(5): 488-492, 499. (in Chinese)
WANG Z L, WANG N, YANG Z Y, et al. Luminescent properties of novel red-emitting phosphor Na3TaF8 with non-equivalent doping of Mn4+ for LED backlighting [J]. J. Lumin., 2017, 192: 690-694. doi: 10.1016/j.jlumin.2017.07.064http://dx.doi.org/10.1016/j.jlumin.2017.07.064
王兆武, 姬海鹏, 徐坚, 等. 白光LED用Mn4+激活红光荧光粉中锰离子价态表征研究进展 [J]. 发光学报, 2020, 41(10): 1195-1213. doi: 10.37188/CJL.20200178http://dx.doi.org/10.37188/CJL.20200178
WANG Z W, JI H P, XU J, et al. Advances in valence state analysis of manganese in Mn4+-activated red phosphors for white LEDs [J]. Chin. J. Lumin., 2020, 41(10): 1195-1213. (in Chinese). doi: 10.37188/CJL.20200178http://dx.doi.org/10.37188/CJL.20200178
0
Views
334
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution