浏览全部资源
扫码关注微信
1.北京大学物理学院 介观物理国家重点实验室, 纳光电子前沿科学中心, 北京 100871
2.北京量子信息科学研究院, 北京 100193
3.中国科学院物理研究所 北京凝聚态物理国家研究中心, 北京 100190
Published:05 July 2023,
Received:23 April 2023,
Revised:09 May 2023,
扫 描 看 全 文
李函聪,陈浠庆,杨静南等.单量子点的发光与应用[J].发光学报,2023,44(07):1251-1272.
LI Hancong,CHEN Xiqing,YANG Jingnan,et al.Luminescence and Applications of Single Quantum Dots[J].Chinese Journal of Luminescence,2023,44(07):1251-1272.
李函聪,陈浠庆,杨静南等.单量子点的发光与应用[J].发光学报,2023,44(07):1251-1272. DOI: 10.37188/CJL.20230105.
LI Hancong,CHEN Xiqing,YANG Jingnan,et al.Luminescence and Applications of Single Quantum Dots[J].Chinese Journal of Luminescence,2023,44(07):1251-1272. DOI: 10.37188/CJL.20230105.
由于量子限制效应,自组装半导体单量子点具有类似于原子的分立能级,可实现高不可分辨、高亮度和高纯度的单光子发射,其多种激子态能够产生不同偏振模式的光子。而光学微纳结构是调控量子点发光性质的有效手段,当单个量子点与光学微腔发生弱耦合时,Purcell效应将大大提高量子点作为单光子源或纠缠光子对源的性能。同时,量子点与光学微腔的强耦合系统可以作为量子光学网络中的量子节点,以及用于研究单光子水平的光学非线性效应。利用量子点与光学波导的耦合可实现固态量子比特和飞行光子比特的相干转换,以及高效的信息处理与传输,由此构建可靠的片上光学网络。此外,单量子点还具有可操控的自旋态,可作为量子比特的载体。考虑到量子点器件的制备过程易与成熟的半导体技术相结合,基于量子点的器件设计具有良好的可扩展性和集成化潜力。
Due to the quantum confinement effect, self-assembled semiconductor single quantum dots exhibit atom-like discrete energy levels enabling highly indistinguishable, high brightness and high purity single photon emission, where multiple exciton states in quantum dots can generate photons with different polarizations. The optical micro-nano structure is an effective means to modulate the luminescent properties of single quantum dots. When a single quantum dot is weakly coupled to an optical micro-cavity, the Purcell effect will greatly improve the performances of the quantum dot as a single photon source or entangled photon-pair source. Meanwhile, the strongly coupled system of quantum dots and optical micro-cavities can be used as quantum nodes in the quantum photonic network or to study the nonlinear optics at the single photon level. Utilizing the coupling of quantum dots and optical waveguides can realize coherent conversion between solid-state quantum bits and flying photonic bits along with efficient information processing and transmission for building a reliable on-chip photonic network. In addition, a single quantum dot has manipulable spin states, which can work as carriers for quantum bits. Considering the convenience of combining the fabrication process of quantum dot devices with mature semiconductor technology, device designs with quantum dots allow good scalability and integration potential.
自组装半导体量子点激子自旋光学微腔光波导
self-assembled semiconductor quantum dotsexcitonsspinsoptical microcavitiesoptical waveguides
HAWRYLAK P. Excitonic artificial atoms: engineering optical properties of quantum dots [J]. Phys. Rev. B, 1999, 60(8): 5597-5608. doi: 10.1103/physrevb.60.5597http://dx.doi.org/10.1103/physrevb.60.5597
ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271(5251): 933-937. doi: 10.1126/science.271.5251.933http://dx.doi.org/10.1126/science.271.5251.933
WANG X C, BAO Z, CHANG Y C, et al. Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes [J]. ACS Energy Lett., 2020, 5(11): 3374-3396. doi: 10.1021/acsenergylett.0c01860http://dx.doi.org/10.1021/acsenergylett.0c01860
SHU Y F, LIN X, QIN H Y, et al. Quantum dots for display applications [J]. Angew. Chem. Int. Ed., 2020, 59(50): 22312-22323. doi: 10.1002/anie.202004857http://dx.doi.org/10.1002/anie.202004857
JUNG H, AHN N, KLIMOV V I. Prospects and challenges of colloidal quantum dot laser diodes [J]. Nat. Photonics, 2021, 15(9): 643-655. doi: 10.1038/s41566-021-00827-6http://dx.doi.org/10.1038/s41566-021-00827-6
KIRMANI A R, LUTHER J M, ABOLHASANI M, et al. Colloidal quantum dot photovoltaics: current progress and path to gigawatt scale enabled by smart manufacturing [J]. ACS Energy Lett., 2020, 5(9): 3069-3100. doi: 10.1021/acsenergylett.0c01453http://dx.doi.org/10.1021/acsenergylett.0c01453
MARZIN J Y, GÉRARD J M, IZRAËL A, et al. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs [J]. Phys. Rev. Lett., 1994, 73(5): 716-719. doi: 10.1103/physrevlett.73.716http://dx.doi.org/10.1103/physrevlett.73.716
PETER E, SENELLART P, MARTROU D, et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity [J]. Phys. Rev. Lett., 2005, 95(6): 067401-1-4. doi: 10.1103/physrevlett.95.067401http://dx.doi.org/10.1103/physrevlett.95.067401
MANO T, ABBARCHI M, KURODA T, et al. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy [J]. Nanotechnology, 2009, 20(39): 395601-1-5. doi: 10.1088/0957-4484/20/39/395601http://dx.doi.org/10.1088/0957-4484/20/39/395601
LU C Y, PAN J W. Quantum-dot single-photon sources for the quantum internet [J]. Nat. Nanotechnol., 2021, 16(12): 1294-1296. doi: 10.1038/s41565-021-01033-9http://dx.doi.org/10.1038/s41565-021-01033-9
WARBURTON R J. Single spins in self-assembled quantum dots [J]. Nat. Mater., 2013, 12(6): 483-493. doi: 10.1038/nmat3585http://dx.doi.org/10.1038/nmat3585
CIRAC J I, ZOLLER P, KIMBLE H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network [J]. Phys. Rev. Lett., 1997, 78(16): 3221-3224. doi: 10.1103/physrevlett.78.3221http://dx.doi.org/10.1103/physrevlett.78.3221
IMAMO LU A, AWSCHALOM D D, BURKARD G, et al. Quantum information processing using quantum dot spins and cavity QED [J]. Phys. Rev. Lett., 1999, 83(20): 4204-4207. doi: 10.1103/physrevlett.83.4204http://dx.doi.org/10.1103/physrevlett.83.4204
KIMBLE H J. The quantum internet [J]. Nature, 2008, 453(7198): 1023-1030. doi: 10.1038/nature07127http://dx.doi.org/10.1038/nature07127
GARCÍA DE ARQUER F P, TALAPIN D V, KLIMOV V I, et al. Semiconductor quantum dots: technological progress and future challenges [J]. Science, 2021, 373(6555): eaaz8541-1-14. doi: 10.1126/science.aaz8541http://dx.doi.org/10.1126/science.aaz8541
SHCHUKIN V A, BIMBERG D. Spontaneous ordering of nanostructures on crystal surfaces [J]. Rev. Mod. Phys., 1999, 71(4): 1125-1171. doi: 10.1103/revmodphys.71.1125http://dx.doi.org/10.1103/revmodphys.71.1125
STRANSKI I N, KRASTANOW L. Zur theorie der orientierten ausscheidung von ionenkristallen aufeinander [J]. Monatsh. Chem., 1937, 71(1): 351-364. doi: 10.1007/bf01798103http://dx.doi.org/10.1007/bf01798103
QIAN C J, WU S Y, SONG F L, et al. Two-photon Rabi splitting in a coupled system of a nanocavity and exciton complexes [J]. Phys. Rev. Lett., 2018, 120(21): 213901-1-5. doi: 10.1103/physrevlett.120.213901http://dx.doi.org/10.1103/physrevlett.120.213901
MÁRQUEZ J, GEELHAAR L, JACOBI K. Atomically resolved structure of InAs quantum dots [J]. Appl. Phys. Lett., 2001, 78(16): 2309-2311. doi: 10.1063/1.1365101http://dx.doi.org/10.1063/1.1365101
LODAHL P, MAHMOODIAN S, STOBBE S. Interfacing single photons and single quantum dots with photonic nanostructures [J]. Rev. Mod. Phys., 2015, 87(2): 347-400. doi: 10.1103/revmodphys.87.347http://dx.doi.org/10.1103/revmodphys.87.347
ARAKAWA Y, HOLMES M J. Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview [J]. Appl. Phys. Rev., 2020, 7(2): 021309-1-16. doi: 10.1063/5.0010193http://dx.doi.org/10.1063/5.0010193
KIM J H, CAI T, RICHARDSON C J K, et al. Two-photon interference from a bright single-photon source at telecom wavelengths [J]. Optica, 2016, 3(6): 577-584. doi: 10.1364/optica.3.000577http://dx.doi.org/10.1364/optica.3.000577
HOLMES M J, CHOI K, KAKO S, et al. Room-temperature triggered single photon emission from a iii-nitride site-controlled nanowire quantum dot [J]. Nano Lett., 2014, 14(2): 982-986. doi: 10.1021/nl404400dhttp://dx.doi.org/10.1021/nl404400d
HOLMES M J, KAKO S, CHOI K, et al. Single photons from a hot solid-state emitter at 350 K [J]. ACS Photonics, 2016, 3(4): 543-546. doi: 10.1021/acsphotonics.6b00112http://dx.doi.org/10.1021/acsphotonics.6b00112
KUHLMANN A, HOUEL J, LUDWIG A, et al. Charge noise and spin noise in a semiconductor quantum device [J]. Nat. Phys., 2013, 9(9): 570-575. doi: 10.1038/nphys2688http://dx.doi.org/10.1038/nphys2688
BAYER M, ORTNER G, STERN O, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots [J]. Phys. Rev. B, 2002, 65(19): 195315-1-23. doi: 10.1103/physrevb.65.195315http://dx.doi.org/10.1103/physrevb.65.195315
SEGUIN R, SCHLIWA A, RODT S, et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots [J]. Phys. Rev. Lett., 2005, 95(25): 257402-1-4. doi: 10.1103/physrevlett.95.257402http://dx.doi.org/10.1103/physrevlett.95.257402
ELLIS D J P, STEVENSON R M, YOUNG R J, et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing [J]. Appl. Phys. Lett., 2007, 90(1): 011907-1-3. doi: 10.1063/1.2430489http://dx.doi.org/10.1063/1.2430489
POEM E, KODRIANO Y, TRADONSKY C, et al. Accessing the dark exciton with light [J]. Nat. Phys., 2010, 6(12): 993-997. doi: 10.1038/nphys1812http://dx.doi.org/10.1038/nphys1812
彭凯. 单量子点中量子态的操控与探测 [D]. 北京: 中国科学院大学(中国科学院物理研究所), 2019. doi: 10.7498/aps.68.20181779http://dx.doi.org/10.7498/aps.68.20181779
PENG K. Quantum State Control and Detection in Single Quantum Dots [D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics CAS), 2019. (in Chinese). doi: 10.7498/aps.68.20181779http://dx.doi.org/10.7498/aps.68.20181779
PENG K, WU S Y, XIE X, et al. Giant photocurrent enhancement by coulomb interaction in a single quantum dot for energy harvesting [J]. Phys. Rev. Appl., 2019, 11(2): 024015-1-8. doi: 10.1103/physrevapplied.11.024015http://dx.doi.org/10.1103/physrevapplied.11.024015
PENG K, WU S Y, TANG J, et al. Probing the dark-exciton states of a single quantum dot using photocurrent spectroscopy in a magnetic field [J]. Phys. Rev. Appl., 2017, 8(6): 064018-1-13. doi: 10.1103/physrevapplied.8.064018http://dx.doi.org/10.1103/physrevapplied.8.064018
ZRENNER A, BEHAM E, STUFLER S, et al. Coherent properties of a two-level system based on a quantum-dot photodiode [J]. Nature, 2002, 418(6898): 612-614. doi: 10.1038/nature00912http://dx.doi.org/10.1038/nature00912
MOLLOW B R. Power spectrum of light scattered by two-level systems [J]. Phys. Rev., 1969, 188(5): 1969-1975. doi: 10.1103/physrev.188.1969http://dx.doi.org/10.1103/physrev.188.1969
ATES S, ULRICH S M, REITZENSTEIN S, et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity [J]. Phys. Rev. Lett., 2009, 103(16): 167402-1-4. doi: 10.1103/physrevlett.103.167402http://dx.doi.org/10.1103/physrevlett.103.167402
NOMURA M, KUMAGAI N, IWAMOTO S, et al. Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system [J]. Nat. Phys., 2010, 6(4): 279-283. doi: 10.1038/nphys1518http://dx.doi.org/10.1038/nphys1518
ELLIS B, MAYER M A, SHAMBAT G, et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser [J]. Nat. Photonics, 2011, 5(5): 297-300. doi: 10.1038/nphoton.2011.51http://dx.doi.org/10.1038/nphoton.2011.51
OTA Y, IWAMOTO S, KUMAGAI N, et al. Spontaneous two-photon emission from a single quantum dot [J]. Phys. Rev. Lett., 2011, 107(23): 233602-1-5. doi: 10.1103/physrevlett.107.233602http://dx.doi.org/10.1103/physrevlett.107.233602
RESHETOV V A, YEVSEYEV I V. Single-photon emission via Raman scattering from the levels with partially resolved hyperfine structure [J]. Opt. Commun., 2010, 283(12): 2557-2560. doi: 10.1016/j.optcom.2010.02.020http://dx.doi.org/10.1016/j.optcom.2010.02.020
JONAS B, HEINZE D, SCHÖLL E, et al. Nonlinear down-conversion in a single quantum dot [J]. Nat. Commun., 2022, 13(1): 1387-1-7. doi: 10.1038/s41467-022-28993-3http://dx.doi.org/10.1038/s41467-022-28993-3
JAYNES E T, CUMMINGS F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser [J]. Proc. IEEE, 1963, 51(1): 89-109. doi: 10.1109/proc.1963.1664http://dx.doi.org/10.1109/proc.1963.1664
ANDREANI L C, PANZARINI G, GÉRARD J M. Strong-coupling regime for quantum boxes in pillar microcavities: theory [J]. Phys. Rev. B, 1999, 60(19): 13276-13279. doi: 10.1103/physrevb.60.13276http://dx.doi.org/10.1103/physrevb.60.13276
VAHALA K J. Optical microcavities [J]. Nature, 2003, 424(6950): 839-846. doi: 10.1038/nature01939http://dx.doi.org/10.1038/nature01939
LAUSSY F P, DEL VALLE E, TEJEDOR C. Strong coupling of quantum dots in microcavities [J]. Phys. Rev. Lett., 2008, 101(8): 083601-1-4. doi: 10.1103/physrevlett.101.083601http://dx.doi.org/10.1103/physrevlett.101.083601
KURUMA K, OTA Y, KAKUDA M, et al. Time-resolved vacuum Rabi oscillations in a quantum-dot-nanocavity system [J]. Phys. Rev. B, 2018, 97(23): 235448-1-7. doi: 10.1103/physrevb.97.235448http://dx.doi.org/10.1103/physrevb.97.235448
REITHMAIER J P, SĘK G, LÖFFLER A, et al. Strong coupling in a single quantum dot-semiconductor microcavity system [J]. Nature, 2004, 432(7014): 197-200. doi: 10.1038/nature02969http://dx.doi.org/10.1038/nature02969
YOSHIE T, SCHERER A, HENDRICKSON J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity [J]. Nature, 2004, 432(7014): 200-203. doi: 10.1038/nature03119http://dx.doi.org/10.1038/nature03119
FARAON A, FUSHMAN I, ENGLUND D, et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade [J]. Nat. Phys., 2008, 4(11): 859-863. doi: 10.1038/nphys1078http://dx.doi.org/10.1038/nphys1078
MÜLLER K, RUNDQUIST A, FISCHER K A, et al. Coherent generation of nonclassical light on chip via detuned photon blockade [J]. Phys. Rev. Lett., 2015, 114(23): 233601-1-5. doi: 10.1103/physrevlett.114.233601http://dx.doi.org/10.1103/physrevlett.114.233601
LIU J, SU R B, WEI Y M, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability [J]. Nat. Nanotechnol., 2019, 14(6): 586-593. doi: 10.1038/s41565-019-0435-9http://dx.doi.org/10.1038/s41565-019-0435-9
VOLZ T, REINHARD A, WINGER M, et al. Ultrafast all-optical switching by single photons [J]. Nat. Photonics, 2012, 6(9): 605-609. doi: 10.1038/nphoton.2012.181http://dx.doi.org/10.1038/nphoton.2012.181
BOSE R, CAI T, CHOUDHURY K R, et al. All-optical coherent control of vacuum Rabi oscillations [J]. Nat. Photonics, 2014, 8(11): 858-864. doi: 10.1038/nphoton.2014.224http://dx.doi.org/10.1038/nphoton.2014.224
HENNESSY K, BADOLATO A, WINGER M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system [J]. Nature, 2007, 445(7130): 896-899. doi: 10.1038/nature05586http://dx.doi.org/10.1038/nature05586
SRINIVASAN K, PAINTER O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system [J]. Nature, 2007, 450(7171): 862-865. doi: 10.1038/nature06274http://dx.doi.org/10.1038/nature06274
OHTA R, OTA Y, NOMURA M, et al. Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot [J]. Appl. Phys. Lett., 2011, 98(17): 173104-1-3. doi: 10.1063/1.3579535http://dx.doi.org/10.1063/1.3579535
DEL VALLE E, ZIPPILLI S, LAUSSY F P, et al. Two-photon lasing by a single quantum dot in a high-Q microcavity [J]. Phys. Rev. B, 2010, 81(3): 035302-1-14. doi: 10.1103/physrevb.81.035302http://dx.doi.org/10.1103/physrevb.81.035302
HEINZE D, ZRENNER A, SCHUMACHER S. Polarization-entangled twin photons from two-photon quantum-dot emission [J]. Phys. Rev. B, 2017, 95(24): 245306-1-9. doi: 10.1103/physrevb.95.245306http://dx.doi.org/10.1103/physrevb.95.245306
HAMSEN C, TOLAZZI K N, WILK T, et al. Two-photon blockade in an atom-driven cavity QED system [J]. Phys. Rev. Lett., 2017, 118(13): 133604-1-6. doi: 10.1103/physrevlett.118.133604http://dx.doi.org/10.1103/physrevlett.118.133604
TANG J, GENG W D, XU X L. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system [J]. Sci. Rep., 2015, 5: 9252-1-6. doi: 10.1038/srep09252http://dx.doi.org/10.1038/srep09252
LE BOITÉ A, HWANG M J, NHA H, et al. Fate of photon blockade in the deep strong-coupling regime [J]. Phys. Rev. A, 2016, 94(3): 033827-1-6. doi: 10.1103/physreva.94.033827http://dx.doi.org/10.1103/physreva.94.033827
OTA Y, TAKAMIYA D, OHTA R, et al. Large vacuum Rabi splitting between a single quantum dot and an h0 photonic crystal nanocavity [J]. Appl. Phys. Lett., 2018, 112(9): 093101-1-5. doi: 10.1063/1.5016615http://dx.doi.org/10.1063/1.5016615
HAGEMEIER J, BONATO C, TRUONG T A, et al. H1 photonic crystal cavities for hybrid quantum information protocols [J]. Opt. Express, 2012, 20(22): 24714-24726. doi: 10.1364/oe.20.024714http://dx.doi.org/10.1364/oe.20.024714
BENMERKHI A, BOUCHEMAT M, BOUCHEMAT T. Ultrahigh-Q of the L3 photonic crystal microcavity [J]. Optik, 2013, 124(22): 5719-5722. doi: 10.1016/j.ijleo.2013.04.028http://dx.doi.org/10.1016/j.ijleo.2013.04.028
DENG C S, PENG H G, GAO Y S, et al. Ultrahigh-Q photonic crystal nanobeam cavities with h-shaped holes [J]. Phys. E Low Dimens. Syst. Nanostruct., 2014, 63: 8-13. doi: 10.1016/j.physe.2014.05.007http://dx.doi.org/10.1016/j.physe.2014.05.007
ZHANG W X, XIE X, HAO H M, et al. Low-threshold topological nanolasers based on the second-order corner state [J]. Light Sci. Appl., 2020, 9: 109-1-6. doi: 10.1038/s41377-020-00352-1http://dx.doi.org/10.1038/s41377-020-00352-1
CASTANIÉ A, FELBACQ D. Confined plasmonic modes in a nanocavity [J]. Opt. Commun., 2012, 285(16): 3353-3357. doi: 10.1016/j.optcom.2012.01.039http://dx.doi.org/10.1016/j.optcom.2012.01.039
QIAN C J, XIE X, YANG J N, et al. Enhanced strong interaction between nanocavities and p-shell excitons beyond the dipole approximation [J]. Phys. Rev. Lett., 2019, 122(8): 087401-1-6. doi: 10.1103/physrevlett.122.087401http://dx.doi.org/10.1103/physrevlett.122.087401
LODAHL P, FLORIS VAN DRIEL A, NIKOLAEV I S, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals [J]. Nature, 2004, 430(7000): 654-657. doi: 10.1038/nature02772http://dx.doi.org/10.1038/nature02772
ENGLUND D, FATTAL D, WAKS E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal [J]. Phys. Rev. Lett., 2005, 95(1): 013904-1-4. doi: 10.1103/physrevlett.95.013904http://dx.doi.org/10.1103/physrevlett.95.013904
DING X, HE Y, DUAN Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar [J]. Phys. Rev. Lett., 2016, 116(2): 020401-1-6. doi: 10.1103/physrevlett.116.020401http://dx.doi.org/10.1103/physrevlett.116.020401
LIU F, BRASH A J, O’HARA J, et al. High Purcell factor generation of indistinguishable on-chip single photons [J]. Nat. Nanotechnol., 2018, 13(9): 835-840. doi: 10.1038/s41565-018-0188-xhttp://dx.doi.org/10.1038/s41565-018-0188-x
GÉRARD J M, SERMAGE B, GAYRAL B, et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity [J]. Phys. Rev. Lett., 1998, 81(5): 1110-1113. doi: 10.1103/physrevlett.81.1110http://dx.doi.org/10.1103/physrevlett.81.1110
WANG H, HE Y, LI Y H, et al. High-efficiency multiphoton boson sampling [J]. Nat. Photonics, 2017, 11(6): 361-365. doi: 10.1038/nphoton.2017.63http://dx.doi.org/10.1038/nphoton.2017.63
AHARONOVICH I, ENGLUND D, TOTH M. Solid-state single-photon emitters [J]. Nat. Photonics, 2016, 10(10): 631-641. doi: 10.1038/nphoton.2016.186http://dx.doi.org/10.1038/nphoton.2016.186
SENELLART P, SOLOMON G, WHITE A. High-performance semiconductor quantum-dot single-photon sources [J]. Nat. Nanotechnol., 2017, 12(11): 1026-1039. doi: 10.1038/nnano.2017.218http://dx.doi.org/10.1038/nnano.2017.218
BROWN R H, TWISS R Q. Correlation between photons in two coherent beams of light [J]. Nature, 1956, 177(4497): 27-29. doi: 10.1038/177027a0http://dx.doi.org/10.1038/177027a0
SANTORI C, FATTAL D, VUČKOVIĆ J, et al. Indistinguishable photons from a single-photon device [J]. Nature, 2002, 419(6907): 594-597. doi: 10.1038/nature01086http://dx.doi.org/10.1038/nature01086
OLLIVIER H, THOMAS S E, WEIN S C, et al. Hong-Ou-Mandel interference with imperfect single photon sources [J]. Phys. Rev. Lett., 2021, 126(6): 063602-1-6. doi: 10.1103/physrevlett.126.063602http://dx.doi.org/10.1103/physrevlett.126.063602
SOMASCHI N, GIESZ V, DE SANTIS L, et al. Near-optimal single-photon sources in the solid state [J]. Nat. Photonics, 2016, 10(5): 340-345. doi: 10.1038/nphoton.2016.23http://dx.doi.org/10.1038/nphoton.2016.23
BIROWOSUTO M D, SUMIKURA H, MATSUO S, et al. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling [J]. Sci. Rep., 2012, 2(1): 321-1-5. doi: 10.1038/srep00321http://dx.doi.org/10.1038/srep00321
HE Y M, HE Y, WEI Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability [J]. Nat. Nanotechnol., 2013, 8(3): 213-217. doi: 10.1038/nnano.2012.262http://dx.doi.org/10.1038/nnano.2012.262
UPPU R, PEDERSEN F T, WANG Y, et al. Scalable integrated single-photon source [J]. Sci. Adv., 2020, 6(50): eabc8268. doi: 10.1126/sciadv.abc8268http://dx.doi.org/10.1126/sciadv.abc8268
TOMM N, JAVADI A, ANTONIADIS N O, et al. A bright and fast source of coherent single photons [J]. Nat. Nanotechnol., 2021, 16(4): 399-403. doi: 10.1038/s41565-020-00831-xhttp://dx.doi.org/10.1038/s41565-020-00831-x
ARCARI M, SÖLLNER I, JAVADI A, et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide [J]. Phys. Rev. Lett., 2014, 113(9): 093603-1-5. doi: 10.1103/physrevlett.113.093603http://dx.doi.org/10.1103/physrevlett.113.093603
MA X S, HERBST T, SCHEIDL T, et al. Quantum teleportation over 143 kilometres using active feed-forward [J]. Nature, 2012, 489(7415): 269-273. doi: 10.1038/nature11472http://dx.doi.org/10.1038/nature11472
MUNRO W J, STEPHENS A M, DEVITT S J, et al. Quantum communication without the necessity of quantum memories [J]. Nat. Photonics, 2012, 6(11): 777-781. doi: 10.1038/nphoton.2012.243http://dx.doi.org/10.1038/nphoton.2012.243
HUDSON A J, STEVENSON R M, BENNETT A J, et al. Coherence of an entangled exciton-photon state [J]. Phys. Rev. Lett., 2007, 99(26): 266802-1-4. doi: 10.1103/physrevlett.99.266802http://dx.doi.org/10.1103/physrevlett.99.266802
AKOPIAN N, LINDNER N H, POEM E, et al. Entangled photon pairs from semiconductor quantum dots [J]. Phys. Rev. Lett., 2006, 96(13): 130501-1-4. doi: 10.1103/physrevlett.96.130501http://dx.doi.org/10.1103/physrevlett.96.130501
STEVENSON R M, SALTER C L, NILSSON J, et al. Indistinguishable entangled photons generated by a light-emitting diode [J]. Phys. Rev. Lett., 2012, 108(4): 040503-1-5. doi: 10.1103/physrevlett.108.040503http://dx.doi.org/10.1103/physrevlett.108.040503
SALTER C L, STEVENSON R M, FARRER I, et al. An entangled-light-emitting diode [J]. Nature, 2010, 465(7298): 594-597. doi: 10.1038/nature09078http://dx.doi.org/10.1038/nature09078
GONG M, HOFER B, ZALLO E, et al. Statistical properties of exciton fine structure splitting and polarization angles in quantum dot ensembles [J]. Phys. Rev. B, 2014, 89(20): 205312-1-11. doi: 10.1103/physrevb.89.205312http://dx.doi.org/10.1103/physrevb.89.205312
DOUSSE A, SUFFCZYŃSKI J, BEVERATOS A, et al. Ultrabright source of entangled photon pairs [J]. Nature, 2010, 466(7303): 217-220. doi: 10.1038/nature09148http://dx.doi.org/10.1038/nature09148
KUHLMANN A V, PRECHTEL J H, HOUEL J, et al. Transform-limited single photons from a single quantum dot [J]. Nat. Commun., 2015, 6: 8204-1-6. doi: 10.1038/ncomms9204http://dx.doi.org/10.1038/ncomms9204
CHEKHOVICH E A, MAKHONIN M N, TARTAKOVSKII A I, et al. Nuclear spin effects in semiconductor quantum dots [J]. Nat. Mater., 2013, 12(6): 494-504. doi: 10.1038/nmat3652http://dx.doi.org/10.1038/nmat3652
HEINDEL T, THOMA A, VON HELVERSEN M, et al. A bright triggered twin-photon source in the solid state [J]. Nat. Commun., 2017, 8: 14870-1-7. doi: 10.1038/ncomms14870http://dx.doi.org/10.1038/ncomms14870
GSCHREY M, THOMA A, SCHNAUBER P, et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography [J]. Nat. Commun., 2015, 6: 7662-1-8. doi: 10.1038/ncomms8662http://dx.doi.org/10.1038/ncomms8662
CHEN Y, ZOPF M, KEIL R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna [J]. Nat. Commun., 2018, 9(1): 2994-1-7. doi: 10.1038/s41467-018-05456-2http://dx.doi.org/10.1038/s41467-018-05456-2
MÜLLER M, BOUNOUAR S, JÖNS K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs [J]. Nat. Photonics, 2014, 8(3): 224-228. doi: 10.1038/nphoton.2013.377http://dx.doi.org/10.1038/nphoton.2013.377
WANG H, HU H, CHUNG T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability [J]. Phys. Rev. Lett., 2019, 122(11): 113602-1-6. doi: 10.1103/physrevlett.122.113602http://dx.doi.org/10.1103/physrevlett.122.113602
VERSTEEGH M A M, REIMER M E, JÖNS K D, et al. Observation of strongly entangled photon pairs from a nanowire quantum dot [J]. Nat. Commun., 2014, 5: 5298-1-6. doi: 10.1038/ncomms6298http://dx.doi.org/10.1038/ncomms6298
HUBER T, PREDOJEVIĆ A, KHOSHNEGAR M, et al. Polarization entangled photons from quantum dots embedded in nanowires [J]. Nano Lett., 2014, 14(12): 7107-7114. doi: 10.1021/nl503581dhttp://dx.doi.org/10.1021/nl503581d
TROTTA R, ZALLO E, ORTIX C, et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry [J]. Phys. Rev. Lett., 2012, 109(14): 147401-1-5. doi: 10.1103/physrevlett.109.147401http://dx.doi.org/10.1103/physrevlett.109.147401
LETTNER T, GYGER S, ZEUNER K D, et al. Strain-controlled quantum dot fine structure for entangled photon generation at 1 550 nm [J]. Nano Lett., 2021, 21(24): 10501-10506. doi: 10.1021/acs.nanolett.1c04024http://dx.doi.org/10.1021/acs.nanolett.1c04024
WANG J P, GONG M, GUO G C, et al. Towards scalable entangled photon sources with self-assembled InAs/GaAs quantum dots [J]. Phys. Rev. Lett., 2015, 115(6): 067401-1-5. doi: 10.1103/physrevlett.115.067401http://dx.doi.org/10.1103/physrevlett.115.067401
HUBER D, REINDL M, HUO Y H, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots [J]. Nat. Commun., 2017, 8: 15506-1-7. doi: 10.1038/ncomms15506http://dx.doi.org/10.1038/ncomms15506
BASSO BASSET F, BIETTI S, REINDL M, et al. High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy [J]. Nano Lett., 2018, 18(1): 505-512. doi: 10.1021/acs.nanolett.7b04472http://dx.doi.org/10.1021/acs.nanolett.7b04472
JUSKA G, DIMASTRODONATO V, MERENI L O, et al. Towards quantum-dot arrays of entangled photon emitters [J]. Nat. Photonics, 2013, 7(7): 527-531. doi: 10.1038/nphoton.2013.128http://dx.doi.org/10.1038/nphoton.2013.128
DIETRICH C P, FIORE A, THOMPSON M G, et al. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits [J]. Laser Photonics Rev., 2016, 10(6): 870-894. doi: 10.1002/lpor.201500321http://dx.doi.org/10.1002/lpor.201500321
BABA T. Slow light in photonic crystals [J]. Nat. Photonics, 2008, 2(8): 465-473. doi: 10.1038/nphoton.2008.146http://dx.doi.org/10.1038/nphoton.2008.146
EK S, LUNNEMANN P, CHEN Y H, et al. Slow-light-enhanced gain in active photonic crystal waveguides [J]. Nat. Commun., 2014, 5: 5039-1-8. doi: 10.1038/ncomms6039http://dx.doi.org/10.1038/ncomms6039
LODAHL P, MAHMOODIAN S, STOBBE S, et al. Chiral quantum optics [J]. Nature, 2017, 541(7638): 473-480. doi: 10.1038/nature21037http://dx.doi.org/10.1038/nature21037
COLES R J, PRICE D M, DIXON J E, et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer [J]. Nat. Commun., 2016, 7: 11183-1-7. doi: 10.1038/ncomms11183http://dx.doi.org/10.1038/ncomms11183
XIAO S, WU S Y, XIE X, et al. Position-dependent chiral coupling between single quantum dots and cross waveguides [J]. Appl. Phys. Lett., 2021, 118(9): 091106-1-6. doi: 10.1063/5.0042480http://dx.doi.org/10.1063/5.0042480
XIAO S, WU S Y, XIE X, et al. Chiral photonic circuits for deterministic spin transfer [J]. Laser Photonics Rev., 2021, 15(9): 2100009-1-8. doi: 10.1002/lpor.202100009http://dx.doi.org/10.1002/lpor.202100009
SÖLLNER I, MAHMOODIAN S, HANSEN S L, et al. Deterministic photon-emitter coupling in chiral photonic circuits [J]. Nat. Nanotechnol., 2015, 10(9): 775-778. doi: 10.1038/nnano.2015.159http://dx.doi.org/10.1038/nnano.2015.159
BARIK S, KARASAHIN A, FLOWER C, et al. A topological quantum optics interface [J]. Science, 2018, 359(6376): 666-668. doi: 10.1126/science.aaq0327http://dx.doi.org/10.1126/science.aaq0327
XIE X, YAN S, DANG J C, et al. Topological cavity based on slow-light topological edge mode for broadband Purcell enhancement [J]. Phys. Rev. Appl., 2021, 16(1): 014036. doi: 10.1103/physrevapplied.16.014036http://dx.doi.org/10.1103/physrevapplied.16.014036
THYRRESTRUP H, KIRŠANSKĖ G, LE JEANNIC H, et al. Quantum optics with near-lifetime-limited quantum-dot: transitions in a nanophotonic waveguide [J]. Nano Lett., 2018, 18(3): 1801-1806. doi: 10.1021/acs.nanolett.7b05016http://dx.doi.org/10.1021/acs.nanolett.7b05016
COLES R J, PRICE D M, ROYALL B, et al. Path-dependent initialization of a single quantum dot exciton spin in a nanophotonic waveguide [J]. Phys. Rev. B, 2017, 95(12): 121401(R)-1-5. doi: 10.1103/physrevb.95.121401http://dx.doi.org/10.1103/physrevb.95.121401
MROWIŃSKI P, SCHNAUBER P, GUTSCHE P, et al. Directional emission of a deterministically fabricated quantum dot-Bragg reflection multimode waveguide system [J]. ACS Photonics, 2019, 6(9): 2231-2237. doi: 10.1021/acsphotonics.9b00369http://dx.doi.org/10.1021/acsphotonics.9b00369
史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输 [J]. 物理学报, 2022, 71(6): 067801-1-7. doi: 10.7498/aps.71.20211858http://dx.doi.org/10.7498/aps.71.20211858
SHI S S, XIAO S, XU X L, et al. Chiral optical transport of quantum dots with different diamagnetic behaviors in a waveguide [J]. Acta Phys. Sinica, 2022, 71(6): 067801-1-7. (in Chinese). doi: 10.7498/aps.71.20211858http://dx.doi.org/10.7498/aps.71.20211858
MANGA RAO V S C, HUGHES S. Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide [J]. Phys. Rev. B, 2007, 75(20): 205437-1-20. doi: 10.1103/physrevb.75.205437http://dx.doi.org/10.1103/physrevb.75.205437
SHI S S, XIAO S, YANG J N, et al. Controllable spin-resolved photon emission enhanced by a slow-light mode in photonic crystal waveguides on a chip [J]. Opt. Express, 2023, 31(6): 10348-10357. doi: 10.1364/oe.483244http://dx.doi.org/10.1364/oe.483244
KIM J H, AGHAEIMEIBODI S, RICHARDSON C J K, et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip [J]. Nano Lett., 2017, 17(12): 7394-7400. doi: 10.1021/acs.nanolett.7b03220http://dx.doi.org/10.1021/acs.nanolett.7b03220
YOUNG A B, THIJSSEN A C T, BEGGS D M, et al. Polarization engineering in photonic crystal waveguides for spin-photon entanglers [J]. Phys. Rev. Lett., 2015, 115(15): 153901-1-5. doi: 10.1103/physrevlett.115.153901http://dx.doi.org/10.1103/physrevlett.115.153901
SIAMPOUR H, O’ROURKE C, BRASH A J, et al. Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide [J]. Npj Quantum Inf., 2023, 9(1): 15-1-8. doi: 10.1038/s41534-023-00686-9http://dx.doi.org/10.1038/s41534-023-00686-9
IWAMOTO S, OTA Y, ARAKAWA Y. Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform [invited] [J]. Opt. Mater. Express, 2021, 11(2): 319-337. doi: 10.1364/ome.415128http://dx.doi.org/10.1364/ome.415128
JALALI MEHRABAD M, FOSTER A P, DOST R, et al. Chiral topological photonics with an embedded quantum emitter [J]. Optica, 2020, 7(12): 1690-1696. doi: 10.1364/optica.393035http://dx.doi.org/10.1364/optica.393035
BARIK S, KARASAHIN A, MITTAL S, et al. Chiral quantum optics using a topological resonator [J]. Phys. Rev. B, 2020, 101(20): 205303-1-7. doi: 10.1103/physrevb.101.205303http://dx.doi.org/10.1103/physrevb.101.205303
YOSHIMI H, YAMAGUCHI T, KATSUMI R, et al. Experimental demonstration of topological slow light waveguides in valley photonic crystals [J]. Opt. Express, 2021, 29(9): 13441-13450. doi: 10.1364/oe.422962http://dx.doi.org/10.1364/oe.422962
SHAPIRA Y, COHEN S, AKERMAN N, et al. Robust two-qubit gates for trapped ions using spin-dependent squeezing [J]. Phys. Rev. Lett., 2023, 130(3): 030602. doi: 10.1103/physrevlett.130.030602http://dx.doi.org/10.1103/physrevlett.130.030602
WU Y L, BAO W S, CAO S R, et al. Strong quantum computational advantage using a superconducting quantum processor [J]. Phys. Rev. Lett., 2021, 127(18): 180501-1-7.
ZHONG H S, DENG Y H, QIN J, et al. Phase-programmable gaussian boson sampling using stimulated squeezed light [J]. Phys. Rev. Lett., 2021, 127(18): 180502-1-9. doi: 10.1103/physrevlett.127.180502http://dx.doi.org/10.1103/physrevlett.127.180502
REISERER A, REMPE G. Cavity-based quantum networks with single atoms and optical photons [J]. Rev. Mod. Phys., 2015, 87(4): 1379-1418. doi: 10.1103/revmodphys.87.1379http://dx.doi.org/10.1103/revmodphys.87.1379
LOSS D, DIVINCENZO D P. Quantum computation with quantum dots [J]. Phys. Rev. A, 1998, 57(1): 120-126. doi: 10.1103/physreva.57.120http://dx.doi.org/10.1103/physreva.57.120
CHATTERJEE A, STEVENSON P, DE FRANCESCHI S, et al. Semiconductor qubits in practice [J]. Nat. Rev. Phys., 2021, 3(3): 157-177. doi: 10.1038/s42254-021-00283-9http://dx.doi.org/10.1038/s42254-021-00283-9
ATATÜRE M, DREISER J, BADOLATO A, et al. Quantum-dot spin-state preparation with near-unity fidelity [J]. Science, 2006, 312(5773): 551-553. doi: 10.1126/science.1126074http://dx.doi.org/10.1126/science.1126074
XU X D, WU Y W, SUN B, et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling [J]. Phys. Rev. Lett., 2007, 99(9): 097401-1-4. doi: 10.1103/physrevlett.99.097401http://dx.doi.org/10.1103/physrevlett.99.097401
BEREZOVSKY J, MIKKELSEN M H, STOLTZ N G, et al. Picosecond coherent optical manipulation of a single electron spin in a quantum dot [J]. Science, 2008, 320(5874): 349-352. doi: 10.1126/science.1154798http://dx.doi.org/10.1126/science.1154798
PRESS D, LADD T D, ZHANG B Y, et al. Complete quantum control of a single quantum dot spin using ultrafast optical pulses [J]. Nature, 2008, 456(7219): 218-221. doi: 10.1038/nature07530http://dx.doi.org/10.1038/nature07530
GREILICH A, YAKOVLEV D R, SHABAEV A, et al. Mode locking of electron spin coherences in singly charged quantum dots [J]. Science, 2006, 313(5785): 341-345. doi: 10.1126/science.1128215http://dx.doi.org/10.1126/science.1128215
PRESS D, DE GREVE K, MCMAHON P L, et al. Ultrafast optical spin echo in a single quantum dot [J]. Nat. Photonics, 2010, 4(6): 367-370. doi: 10.1038/nphoton.2010.83http://dx.doi.org/10.1038/nphoton.2010.83
ELZERMAN J M, HANSON R, WILLEMS VAN BEVEREN L H, et al. Single-shot read-out of an individual electron spin in a quantum dot [J]. Nature, 2004, 430(6998): 431-435. doi: 10.1038/nature02693http://dx.doi.org/10.1038/nature02693
ZHENG G J, SAMKHARADZE N, NOORDAM M L, et al. Rapid gate-based spin read-out in silicon using an on-chip resonator [J]. Nat. Nanotechnol., 2019, 14(8): 742-746. doi: 10.1038/s41565-019-0488-9http://dx.doi.org/10.1038/s41565-019-0488-9
PLA J J, TAN K Y, DEHOLLAIN J P, et al. High-fidelity readout and control of a nuclear spin qubit in silicon [J]. Nature, 2013, 496(7445): 334-338. doi: 10.1038/nature12011http://dx.doi.org/10.1038/nature12011
WATSON T F, WEBER B, HOUSE M G, et al. High-fidelity rapid initialization and read-out of an electron spin via the single donor D- charge state [J]. Phys. Rev. Lett., 2015, 115(16): 166806-1-5. doi: 10.1103/physrevlett.115.166806http://dx.doi.org/10.1103/physrevlett.115.166806
HARVEY-COLLARD P, D’ANJOU B, RUDOLPH M, et al. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism [J]. Phys. Rev. Ⅹ, 2018, 8(2): 021046-1-11. doi: 10.1103/physrevx.8.021046http://dx.doi.org/10.1103/physrevx.8.021046
BULAEV D V, LOSS D. Spin relaxation and decoherence of holes in quantum dots [J]. Phys. Rev. Lett., 2005, 95(7): 076805-1-4. doi: 10.1103/physrevlett.95.076805http://dx.doi.org/10.1103/physrevlett.95.076805
BULAEV D V, LOSS D. Electric dipole spin resonance for heavy holes in quantum dots [J]. Phys. Rev. Lett., 2007, 98(9): 097202-1-4. doi: 10.1103/physrevlett.98.097202http://dx.doi.org/10.1103/physrevlett.98.097202
RUSS M, BURKARD G. Three-electron spin qubits [J]. J. Phys.: Condens. Matter, 2017, 29(39): 393001-1-35. doi: 10.1088/1361-648x/aa761fhttp://dx.doi.org/10.1088/1361-648x/aa761f
KIM D, SHI Z, SIMMONS C B, et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit [J]. Nature, 2014, 511(7507): 70-74. doi: 10.1038/nature13407http://dx.doi.org/10.1038/nature13407
RUSS M, PETTA J R, BURKARD G. Quadrupolar exchange-only spin qubit [J]. Phys. Rev. Lett., 2018, 121(17): 177701-1-6. doi: 10.1103/physrevlett.121.177701http://dx.doi.org/10.1103/physrevlett.121.177701
SALA A, QVIST J H, DANON J. Highly tunable exchange-only singlet-only qubit in a GaAs triple quantum dot [J]. Phys. Rev. Res., 2020, 2(1): 012062R). doi: 10.1103/physrevresearch.2.012062http://dx.doi.org/10.1103/physrevresearch.2.012062
SCHNEIDER C, HUGGENBERGER A, SÜNNER T, et al. Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration [J]. Nanotechnology, 2009, 20(43): 434012-1-9. doi: 10.1088/0957-4484/20/43/434012http://dx.doi.org/10.1088/0957-4484/20/43/434012
DOUSSE A, LANCO L, SUFFCZYŃSKI J, et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography [J]. Phys. Rev. Lett., 2008, 101(26): 267404-1-4. doi: 10.1103/physrevlett.101.267404http://dx.doi.org/10.1103/physrevlett.101.267404
LIU J, DAVANÇO M I, SAPIENZA L, et al. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters [J]. Rev. Sci. Instrum., 2017, 88(2): 023116-1-7. doi: 10.1063/1.4976578http://dx.doi.org/10.1063/1.4976578
LAUCHT A, HOFBAUER F, HAUKE N, et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot [J]. New J. Phys., 2009, 11(2): 023034-1-11. doi: 10.1088/1367-2630/11/2/023034http://dx.doi.org/10.1088/1367-2630/11/2/023034
BOSE R, SRIDHARAN D, SOLOMON G S, et al. Large optical stark shifts in semiconductor quantum dots coupled to photonic crystal cavities [J]. Appl. Phys. Lett., 2011, 98(12): 121109-1-3. doi: 10.1063/1.3571446http://dx.doi.org/10.1063/1.3571446
KIM H, SHEN T C, SRIDHARAN D, et al. Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity [J]. Appl. Phys. Lett., 2011, 98(9): 091102-1-3. doi: 10.1063/1.3562344http://dx.doi.org/10.1063/1.3562344
JÖNS K D, HAFENBRAK R, SINGH R, et al. Dependence of the redshifted and blueshifted photoluminescence spectra of single InxGa1-xAs/GaAs quantum dots on the applied uniaxial stress [J]. Phys. Rev. Lett., 2011, 107(21): 217402-1-5. doi: 10.1103/physrevlett.107.217402http://dx.doi.org/10.1103/physrevlett.107.217402
PATEL R B, BENNETT A J, FARRER I, et al. Two-photon interference of the emission from electrically tunable remote quantum dots [J]. Nat. Photonics, 2010, 4(9): 632-635. doi: 10.1038/nphoton.2010.161http://dx.doi.org/10.1038/nphoton.2010.161
BUTTÉ R, GRANDJEAN N. Ⅲ-nitride photonic cavities [J]. Nanophotonics, 2020, 9(3): 569-598. doi: 10.1515/nanoph-2019-0442http://dx.doi.org/10.1515/nanoph-2019-0442
HOLMES M J, ARITA M, ARAKAWA Y. Ⅲ-nitride quantum dots as single photon emitters [J]. Semicond. Sci. Technol., 2019, 34(3): 033001-1-10. doi: 10.1088/1361-6641/ab02c8http://dx.doi.org/10.1088/1361-6641/ab02c8
MAURER P C, MAZE J R, STANWIX P L, et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution [J]. Nat. Phys., 2010, 6(11): 912-918. doi: 10.1038/nphys1774http://dx.doi.org/10.1038/nphys1774
SCHUKRAFT M, ZHENG J, SCHRÖDER T, et al. Invited article: precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides [J]. APL Photonics, 2016, 1(2): 020801. doi: 10.1063/1.4948746http://dx.doi.org/10.1063/1.4948746
UPPU R, MIDOLO L, ZHOU X Y, et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology [J]. Nat. Nanotechnol., 2021, 16(12): 1308-1317. doi: 10.1212/wnl.52.9.1891http://dx.doi.org/10.1212/wnl.52.9.1891
0
Views
474
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution