浏览全部资源
扫码关注微信
1.北京交通大学物理科学与工程学院 光电子技术研究所, 北京 100044
2.美国堪萨斯大学 物理与天文学系, 堪萨斯州 劳伦斯市 66045
Published:05 July 2023,
Received:20 April 2023,
Revised:10 May 2023,
扫 描 看 全 文
何大伟,赵辉,王永生.二维材料及其异质结构中载流子动力学过程研究进展[J].发光学报,2023,44(07):1273-1286.
HE Dawei,ZHAO Hui,WANG Yongsheng.Research Progress on Photocarrier Dynamics in Two-dimensional Materials and Their Heterostructures[J].Chinese Journal of Luminescence,2023,44(07):1273-1286.
何大伟,赵辉,王永生.二维材料及其异质结构中载流子动力学过程研究进展[J].发光学报,2023,44(07):1273-1286. DOI: 10.37188/CJL.20230101.
HE Dawei,ZHAO Hui,WANG Yongsheng.Research Progress on Photocarrier Dynamics in Two-dimensional Materials and Their Heterostructures[J].Chinese Journal of Luminescence,2023,44(07):1273-1286. DOI: 10.37188/CJL.20230101.
二维材料及其异质结构由于其独特的结构和优异的光电性能,有望成为下一代光电子技术的核心材料。光生载流子的动力学性质对这些材料的光电性能具有重要的影响。本文综述了近年来对这些材料中光生载流子动力学过程的研究进展。在时域动力学方面,介绍了利用基于超快激光的瞬态吸收光谱技术所揭示的二维材料中的载流子热化、能量弛豫、激子形成、激子⁃激子湮灭、以及激子复合等物理过程。在空域动力学方面,讨论了利用具有高空间分辨率的瞬态吸收显微技术来研究光生载流子在二维材料平面内的输运过程。在此基础上,进一步讨论了二维材料异质结构中的电荷及能量在层间转移的过程。
Due to their unique structures and excellent optoelectronic properties, two-dimensional (2D) materials and their heterostructures are promising materials for the next generation optoelectronic technology. The dynamic properties of photocarriers have an important influence on the optoelectronic properties of these materials. This review discusses the research progress in recent years on the photocarrier dynamics in these materials. In the time domain, transient absorption measurements of carrier thermalization, energy relaxation, exciton formation, exciton-exciton annihilation, and exciton recombination in 2D materials are discussed. In the spatial domain, high-spatial-resolution transient absorption microscopy studies of photocarrier in-plane transport properties are introduced. Furthermore, interlayer charge and energy transfer in 2D heterostructures are discussed.
二维材料瞬态吸收载流子动力学超快激光
two-dimensional materialtransient absorptioncarrier dynamicsultrafast laser
WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nat. Nanotechnol., 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193http://dx.doi.org/10.1038/nnano.2012.193
SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano Lett., 2010, 10(4): 1271-1275. doi: 10.1021/nl903868whttp://dx.doi.org/10.1021/nl903868w
KUMAR N, NAJMAEI S, CUI Q N, et al. Second harmonic microscopy of monolayer MoS2 [J]. Phys. Rev. B, 2013, 87(16): 161403-1-6. doi: 10.1103/physrevb.87.161403http://dx.doi.org/10.1103/physrevb.87.161403
LI Y L, RAO Y, MAK K F, et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation [J]. Nano Lett., 2013, 13(7): 3329-3333. doi: 10.1021/nl401561rhttp://dx.doi.org/10.1021/nl401561r
CHERNIKOV A, BERKELBACH T C, HILL H M, et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 [J]. Phys. Rev. Lett., 2014, 113(7): 076802-1-5. doi: 10.1103/physrevlett.113.076802http://dx.doi.org/10.1103/physrevlett.113.076802
HE K L, KUMAR N, ZHAO L, et al. Tightly bound excitons in monolayer WSe2 [J]. Phys. Rev. Lett., 2014, 113(2): 026803. doi: 10.1103/physrevlett.113.026803http://dx.doi.org/10.1103/physrevlett.113.026803
NIE Z G, LONG R, SUN L F, et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2 [J]. ACS Nano, 2014, 8(10): 10931-10940. doi: 10.1021/nn504760xhttp://dx.doi.org/10.1021/nn504760x
RAJA A, CHAVES A, YU J, et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials [J]. Nat. Commun., 2017, 8(1): 15251-1-7. doi: 10.1038/ncomms15251http://dx.doi.org/10.1038/ncomms15251
BRITNELL L, RIBEIRO R M, ECKMANN A, et al. Strong light-matter interactions in heterostructures of atomically thin films [J]. Science, 2013, 340(6138): 1311-1314. doi: 10.1126/science.1235547http://dx.doi.org/10.1126/science.1235547
AKINWANDE D, PETRONE N, HONE J. Two-dimensional flexible nanoelectronics [J]. Nat. Commun., 2014, 5(1): 5678-1-12. doi: 10.1038/ncomms6678http://dx.doi.org/10.1038/ncomms6678
YANG L Y, SINITSYN N A, CHEN W B, et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2 [J]. Nat. Phys., 2015, 11(10): 830-834. doi: 10.1038/nphys3419http://dx.doi.org/10.1038/nphys3419
GEORGIOU T, JALIL R, BELLE B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics [J]. Nat. Nanotechnol., 2013, 8(2): 100-103. doi: 10.1038/nnano.2012.224http://dx.doi.org/10.1038/nnano.2012.224
GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures [J]. Nature, 2013, 499(7459): 419-425. doi: 10.1038/nature12385http://dx.doi.org/10.1038/nature12385
CEBALLOS F, ZHAO H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene [J]. Adv. Funct. Mater., 2017, 27(19): 1604509-1-14. doi: 10.1002/adfm.201604509http://dx.doi.org/10.1002/adfm.201604509
JIN C H, MA E Y, KARNI O, et al. Ultrafast dynamics in van der Waals heterostructures [J]. Nat. Nanotechnol., 2018, 13(11): 994-1003. doi: 10.1038/s41565-018-0298-5http://dx.doi.org/10.1038/s41565-018-0298-5
RIVERA P, YU H Y, SEYLER K L, et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides [J]. Nat. Nanotechnol., 2018, 13(11): 1004-1015. doi: 10.1038/s41565-018-0193-0http://dx.doi.org/10.1038/s41565-018-0193-0
WANG G, CHERNIKOV A, GLAZOV M M, et al. Colloquium: excitons in atomically thin transition metal dichalcogenides [J]. Rev. Mod. Phys., 2018, 90(2): 021001. doi: 10.1103/revmodphys.90.021001http://dx.doi.org/10.1103/revmodphys.90.021001
WANG R, RUZICKA B A, KUMAR N, et al. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide [J]. Phys. Rev. B, 2012, 86(4): 045406-1-5. doi: 10.1103/physrevb.86.045406http://dx.doi.org/10.1103/physrevb.86.045406
SHI H Y, YAN R S, BERTOLAZZI S, et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals [J]. ACS Nano, 2012, 7(2): 1072-1080. doi: 10.1021/nn303973rhttp://dx.doi.org/10.1021/nn303973r
CUI Q N, HE J Q, BELLUS M Z, et al. Transient absorption measurements on anisotropic monolayer ReS2 [J]. Small, 2015, 11(41): 5565-5571. doi: 10.1002/smll.201501668http://dx.doi.org/10.1002/smll.201501668
SCHMITT-RINK S, CHEMLA D S, MILLER D A B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures [J]. Phys. Rev. B, 1985, 32(10ss): 6601-6609. doi: 10.1103/physrevb.32.6601http://dx.doi.org/10.1103/physrevb.32.6601
ZHAO S Q, HE D W, HE J Q, et al. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption [J]. Nanoscale, 2018, 10(20): 9538-9546. doi: 10.1039/c8nr03135ehttp://dx.doi.org/10.1039/c8nr03135e
WANG W Y, SUI N, CHI X C, et al. Investigation of hot carrier cooling dynamics in monolayer MoS2 [J]. J. Phys. Chem. Lett., 2021, 12(2): 861-868,. doi: 10.1021/acs.jpclett.0c03110http://dx.doi.org/10.1021/acs.jpclett.0c03110
CEBALLOS F, CUI Q N, BELLUS M Z, et al. Exciton formation in monolayer transition metal dichalcogenides [J]. Nanoscale, 2016, 8(22): 11681-11688. doi: 10.1039/c6nr02516ahttp://dx.doi.org/10.1039/c6nr02516a
VALENCIA-ACUNA P, ZERESHKI P, TAVAKOLI M M, et al. Transient absorption of transition metal dichalcogenide monolayers studied by a photodope-pump-probe technique [J]. Phys. Rev. B, 2020, 102(3): 035414-1-7. doi: 10.1103/physrevb.102.035414http://dx.doi.org/10.1103/physrevb.102.035414
WALLAUER R, PEREA-CAUSIN R, MUNSTER L, et al. Momentum-resolved observation of exciton formation dynamics in monolayer WS2 [J]. Nano Lett., 2021, 21(13): 5867-5873. doi: 10.1021/acs.nanolett.1c01839http://dx.doi.org/10.1021/acs.nanolett.1c01839
KUMAR N, CUI Q N, CEBALLOS F, et al. Exciton-exciton annihilation in MoSe2 monolayers [J]. Phys. Rev. B, 2014, 89(12): 125427-1-6. doi: 10.1103/physrevb.89.125427http://dx.doi.org/10.1103/physrevb.89.125427
SUN D Z, RAO Y, REIDER G A, et al. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide [J]. Nano Lett., 2014, 14(10): 5625-5629. doi: 10.1021/nl5021975http://dx.doi.org/10.1021/nl5021975
YU Y L, YU Y F, XU C, et al. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers [J]. Phys. Rev. B, 2016, 93(20): 201111-1-5. doi: 10.1103/physrevb.93.201111http://dx.doi.org/10.1103/physrevb.93.201111
STEINHOFF A, JAHNKE F, FLORIAN M. Microscopic theory of exciton-exciton annihilation in two-dimensional semiconductors [J]. Phys. Rev. B, 2021, 104(15): 155416-1-16. doi: 10.1103/physrevb.104.155416http://dx.doi.org/10.1103/physrevb.104.155416
HOSHI Y, KURODA T, OKADA M, et al. Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides [J]. Phys. Rev. B, 2017, 95(24): 241403-1-6. doi: 10.1103/physrevb.95.241403http://dx.doi.org/10.1103/physrevb.95.241403
FU Y, HE D W, HE J Q, et al. Effect of dielectric environment on excitonic dynamics in monolayer WS2 [J]. Adv. Mater. Interfaces, 2019, 6(23): 1901307-1-9. doi: 10.1002/admi.201901307http://dx.doi.org/10.1002/admi.201901307
KAJINO Y, SAKANASHI K, AOKI N, et al. Quantized exciton-exciton annihilation in monolayer WS2 on SrTiO3 substrate with atomically flat terraces [J]. Phys. Rev. B, 2021, 103(24): L241410-1-6. doi: 10.1103/physrevb.103.l241410http://dx.doi.org/10.1103/physrevb.103.l241410
LINARDY E, YADAV D, VELLA D, et al. Harnessing exciton-exciton annihilation in two-dimensional semiconductors [J]. Nano Lett., 2020, 20(3): 1647-1653. doi: 10.1021/acs.nanolett.9b04756http://dx.doi.org/10.1021/acs.nanolett.9b04756
LEE Y, GHIMIRE G, ROY S, et al. Impeding exciton-exciton annihilation in monolayer WS2 by laser irradiation [J]. ACS Photonics, 2018, 5(7): 2904-2911. doi: 10.1021/acsphotonics.8b00249http://dx.doi.org/10.1021/acsphotonics.8b00249
PAREEK V, MADÉO J, DANI K M. Ultrafast control of the dimensionality of exciton-exciton annihilation in atomically thin black phosphorus [J]. Phys. Rev. Lett., 2020, 124(5): 057403-1-6. doi: 10.1103/physrevlett.124.057403http://dx.doi.org/10.1103/physrevlett.124.057403
CHOW C M E, YU H Y, SCHAIBLEY J R, et al. Monolayer semiconductor Auger detector [J]. Nano Lett., 2020, 20(7): 5538-5543. doi: 10.1021/acs.nanolett.0c02190http://dx.doi.org/10.1021/acs.nanolett.0c02190
ROBERT C, LAGARDE D, CADIZ F, et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers [J]. Phys. Rev. B, 2016, 93(20): 205423-1-10. doi: 10.1103/physrevb.93.205423http://dx.doi.org/10.1103/physrevb.93.205423
WANG H N, ZHANG C J, CHAN W M, et al. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2 [J]. Phys. Rev. B, 2016, 93(4): 045407-1-11. doi: 10.1103/physrevb.93.045407http://dx.doi.org/10.1103/physrevb.93.045407
AMANI M, TAHERI P, ADDOU R, et al. Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenides [J]. Nano Lett., 2016, 16(4): 2786-2791. doi: 10.1021/acs.nanolett.6b00536http://dx.doi.org/10.1021/acs.nanolett.6b00536
SLOBODENIUK A O, BASKO D M. Exciton-phonon relaxation bottleneck and radiative decay of thermal exciton reservoir in two-dimensional materials [J]. Phys. Rev. B, 2016, 94(20): 205423-1-8. doi: 10.1103/physrevb.94.205423http://dx.doi.org/10.1103/physrevb.94.205423
CUI Q N, CEBALLOS F, KUMAR N, et al. Transient absorption microscopy of monolayer and bulk WSe2 [J]. ACS Nano, 2014, 8(3): 2970-2976. doi: 10.1021/nn500277yhttp://dx.doi.org/10.1021/nn500277y
ALEITHAN S H, LIVSHITS M Y, KHADKA S, et al. Broadband femtosecond transient absorption spectroscopy for a CVD MoS2 monolayer [J]. Phys. Rev. B, 2016, 94(3): 035445-1-7. doi: 10.1103/physrevb.94.035445http://dx.doi.org/10.1103/physrevb.94.035445
POGNA E AA, MARSILI M, DE FAZIO D, et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2 [J]. ACS Nano, 2016, 10(1): 1182-1188. doi: 10.1021/acsnano.5b06488http://dx.doi.org/10.1021/acsnano.5b06488
HE J Q, ZHANG L, HE D W, et al. Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2 [J]. Opt. Express, 2018, 26(17): 21501-21509. doi: 10.1364/oe.26.021501http://dx.doi.org/10.1364/oe.26.021501
CUI Q N, LI Y Y, CHANG J H, et al. Temporally resolving synchronous degenerate and nondegenerate two-photon absorption in 2D semiconducting monolayers [J]. Laser Photonics Rev., 2019, 13(2): 1800225-1-10. doi: 10.1002/lpor.201800225http://dx.doi.org/10.1002/lpor.201800225
AMANI M, LIEN D H, KIRIYA D, et al. Near-unity photoluminescence quantum yield in MoS2 [J]. Science, 2015, 350(6264): 1065-1068. doi: 10.1126/science.aad2114http://dx.doi.org/10.1126/science.aad2114
TANOH A O A, ALEXANDER-WEBBER J, XIAO J, et al. Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands [J]. Nano Lett., 2019, 19(9): 6299-6307. doi: 10.1021/acs.nanolett.9b02431http://dx.doi.org/10.1021/acs.nanolett.9b02431
ZHENG T, LIN Y C, YU Y L, et al. Excitonic dynamics in Janus MoSSe and WSSe monolayers [J]. Nano Lett., 2021, 21(2): 931-937. doi: 10.1021/acs.nanolett.0c03412http://dx.doi.org/10.1021/acs.nanolett.0c03412
LU A Y, ZHU H Y, XIAO J, et al. Janus monolayers of transition metal dichalcogenides [J]. Nat. Nanotechnol., 2017, 12(8): 744-749. doi: 10.1038/nnano.2017.100http://dx.doi.org/10.1038/nnano.2017.100
ZHANG J, JIA S, KHOLMANOV I, et al. Janus monolayer transition-metal dichalcogenides [J]. ACS Nano, 2017, 11(8): 8192-8198. doi: 10.1021/acsnano.7b03186http://dx.doi.org/10.1021/acsnano.7b03186
GINSBERG N S, TISDALE W A. Spatially resolved photogenerated exciton and charge transport in emerging semiconductors [J]. Annu. Rev. Phys. Chem., 2020, 71: 1-30. doi: 10.1146/annurev-physchem-052516-050703http://dx.doi.org/10.1146/annurev-physchem-052516-050703
RUZICKA B A, WANG S, WERAKE L K, et al. Hot carrier diffusion in graphene [J]. Phys. Rev. B, 2010, 82(19): 195414. doi: 10.1103/physrevb.82.195414http://dx.doi.org/10.1103/physrevb.82.195414
HE J Q, HE D W, WANG Y S, et al. Exceptional and anisotropic transport properties of photocarriers in black phosphorus [J]. ACS Nano, 2015, 9(6): 6436-6442. doi: 10.1021/acsnano.5b02104http://dx.doi.org/10.1021/acsnano.5b02104
HE J Q, HE D W, WANG Y S, et al. Spatiotemporal dynamics of excitons in monolayer and bulk WS2 [J]. Nanoscale, 2015, 7(21): 9526-9531. doi: 10.1039/c5nr00188ahttp://dx.doi.org/10.1039/c5nr00188a
KUMAR N, CUI Q N, CEBALLOS F, et al. Exciton diffusion in monolayer and bulk MoSe2 [J]. Nanoscale, 2014, 6(9): 4915-4919. doi: 10.1039/c3nr06863chttp://dx.doi.org/10.1039/c3nr06863c
PAN S D, KONG W J, LIU J H, et al. Understanding spatiotemporal photocarrier dynamics in monolayer and bulk MoTe2 for optimized optoelectronic devices [J]. ACS Appl. Nano Mater., 2019, 2(1): 459-464. doi: 10.1021/acsanm.8b02008http://dx.doi.org/10.1021/acsanm.8b02008
LIU S Y, TAN C W, HE D W, et al. Optical properties and photocarrier dynamics of Bi2O2Se monolayer and nanoplates [J]. Adv. Opt. Mater., 2020, 8(6): 1901567-1-9. doi: 10.1002/adom.201901567http://dx.doi.org/10.1002/adom.201901567
WANG P Z, HE D W, WANG Y S, et al. Fast exciton diffusion in monolayer PtSe2 [J]. Laser Photonics Rev., 2022, 16(7): 2100594-1-8. doi: 10.1002/lpor.202100594http://dx.doi.org/10.1002/lpor.202100594
MIAO Q, HE D W, HAN X X, et al. Spatiotemporally resolved optical measurements on photocarrier dynamics in copper monosulfide [J]. J. Phys. Chem. C, 2020, 124(27): 14459-14464. doi: 10.1021/acs.jpcc.0c02997http://dx.doi.org/10.1021/acs.jpcc.0c02997
WANG P Z, HE D W, HE J Q, et al. Transient absorption microscopy of layered crystal AsSbS3 [J]. J. Phys. Chem. A, 2020, 124(5): 1047-1052. doi: 10.1021/acs.jpca.9b11940http://dx.doi.org/10.1021/acs.jpca.9b11940
CUI Q N, ZHAO H. Coherent control of nanoscale ballistic currents in transition metal dichalcogenide ReS2 [J]. ACS Nano, 2015, 9(4): 3935-3941. doi: 10.1021/acsnano.5b01111http://dx.doi.org/10.1021/acsnano.5b01111
HAO S C, BELLUS M Z, HE D W, et al. Controlling exciton transport in monolayer MoSe2 by dielectric screening [J]. Nanoscale Horiz., 2020, 5(1): 139-143. doi: 10.1039/c9nh00462ahttp://dx.doi.org/10.1039/c9nh00462a
CEBALLOS F, BELLUS M Z, CHIU H Y, et al. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure [J]. ACS Nano, 2014, 8(12): 12717-12724. doi: 10.1021/nn505736zhttp://dx.doi.org/10.1021/nn505736z
HONG X P, KIM J, SHI S F, et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures [J]. Nat. Nanotechnol., 2014, 9(9): 682-686. doi: 10.1038/nnano.2014.167http://dx.doi.org/10.1038/nnano.2014.167
JI Z H, HONG H, ZHANG J, et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers [J]. ACS Nano, 2017, 11(12): 12020-12026. doi: 10.1021/acsnano.7b04541http://dx.doi.org/10.1021/acsnano.7b04541
MERKL P, MOOSHAMMER F, STEINLEITNER P, et al. Ultrafast transition between exciton phases in van der Waals heterostructures [J]. Nat. Mater., 2019, 18(7): 691-696. doi: 10.1038/s41563-019-0337-0http://dx.doi.org/10.1038/s41563-019-0337-0
ZHANG L, HE D W, HE J Q, et al. Ultrafast charge transfer in a type-Ⅱ MoS2-ReSe2 van der Waals heterostructure [J]. Opt. Express, 2019, 27(13): 17851-17858. doi: 10.1364/oe.27.017851http://dx.doi.org/10.1364/oe.27.017851
ZIMMERMANN J E, KIM Y D, HONE J C, et al. Directional ultrafast charge transfer in a WSe2/MoSe2 heterostructure selectively probed by time-resolved SHG imaging microscopy [J]. Nanoscale Horiz., 2020, 5(12): 1603-1609. doi: 10.1039/d0nh00396dhttp://dx.doi.org/10.1039/d0nh00396d
ZHU X Y, MONAHAN N R, GONG Z Z, et al. Charge transfer excitons at van der Waals interfaces [J]. J. Am. Chem. Soc., 2015, 137(26): 8313-8320. doi: 10.1021/jacs.5b03141http://dx.doi.org/10.1021/jacs.5b03141
ZHOU H Z, ZHAO Y D, TAO W J, et al. Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity [J]. ACS Nano, 2020, 14(4): 4618-4625. doi: 10.1021/acsnano.0c00218http://dx.doi.org/10.1021/acsnano.0c00218
WANG H, BANG J, SUN Y Y, et al. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures [J]. Nat. Commun., 2016, 7(1): 11504-1-9. doi: 10.1038/ncomms11504http://dx.doi.org/10.1038/ncomms11504
WANG Z L, ALTMANN P, GADERMAIER C, et al. Phonon-mediated interlayer charge separation and recombination in a MoSe2/WSe2 heterostructure [J]. Nano Lett. 2021, 21(5): 2165-2173. doi: 10.1021/acs.nanolett.0c04955http://dx.doi.org/10.1021/acs.nanolett.0c04955
LONG R, PREZHDO O V. Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction [J]. Nano Lett., 2016, 16(3): 1996-2003. doi: 10.1021/acs.nanolett.5b05264http://dx.doi.org/10.1021/acs.nanolett.5b05264
WANG Y, WANG Z, YAO W, et al. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides [J]. Phys. Rev. B, 2017, 95(11): 115429-1-12. doi: 10.1103/physrevb.95.115429http://dx.doi.org/10.1103/physrevb.95.115429
LIU S Y, HE D W, TAN C W, et al. Charge transfer properties of heterostructures formed by Bi2O2Se and transition metal dichalcogenide monolayers [J]. Small, 2022, 18(7): 2106078-1-11. doi: 10.1002/smll.202106078http://dx.doi.org/10.1002/smll.202106078
WANG P Z, HE D W, WANG Y S, et al. Ultrafast interlayer charge transfer between bilayer PtSe2 and monolayer WS2 [J]. ACS Appl. Mater. Interfaces, 2021, 13(48): 57822-57830. doi: 10.1021/acsami.1c18189http://dx.doi.org/10.1021/acsami.1c18189
FU Y, HE D W, HE J Q, et al. Photocarrier dynamics in TlGaS2 nanoflakes and van der Waals heterostructures with hexagonal boron nitride and WS2 nanoflakes: implications for optoelectronic applications [J]. ACS Appl. Nano Mater., 2020, 3(9): 8702-8707. doi: 10.1021/acsanm.0c01448http://dx.doi.org/10.1021/acsanm.0c01448
BELLUS M Z, YANG Z B, ZERESHKI P, et al. Efficient hole transfer from monolayer WS2 to ultrathin amorphous black phosphorus [J]. Nanoscale Horiz., 2019, 4(1): 236-242. doi: 10.1039/c8nh00234ghttp://dx.doi.org/10.1039/c8nh00234g
HE J Q, LI T S, ZHANG L, et al. Efficient energy transfer in In2Se3-MoSe2 van der Waals heterostructures [J]. ACS Omega, 2018, 3(9): 11930-11936. doi: 10.1021/acsomega.8b01532http://dx.doi.org/10.1021/acsomega.8b01532
GU J, LIU X, LIN E C, et al. Dipole-aligned energy transfer between excitons in two-dimensional transition metal dichalcogenide and organic semiconductor [J]. ACS Photonics, 2018, 5(1): 100-104. doi: 10.1021/acsphotonics.7b00730http://dx.doi.org/10.1021/acsphotonics.7b00730
KOZAWA D, CARVALHO A, VERZHBITSKIY I, et al. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures [J]. Nano Lett., 2016, 16(7): 4087-4093. doi: 10.1021/acs.nanolett.6b00801http://dx.doi.org/10.1021/acs.nanolett.6b00801
ZHENG S W, WANG H, WANG L, et al. Dexter-type exciton transfer in van der Waals heterostructures [J]. Adv. Funct. Mater., 2022, 32(26): 2201123. doi: 10.1002/adfm.202201123http://dx.doi.org/10.1002/adfm.202201123
HE J Q, KUMAR N, BELLUS M Z, et al. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures [J]. Nat. Commun., 2014, 5(1): 5622. doi: 10.1038/ncomms6622http://dx.doi.org/10.1038/ncomms6622
HE J Q, HE D W, WANG Y S, et al. Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals heterostructures [J]. Opt. Express, 2017, 25(3): 1949-1957. doi: 10.1364/oe.25.001949http://dx.doi.org/10.1364/oe.25.001949
WANG P Z, WANG Y S, BIAN A, et al. Energy transfer in a type-Ⅰ van der Waals heterostructure of WSe2/PtSe2 [J]. 2D Mater., 2022, 9(3): 035019. doi: 10.1088/2053-1583/ac75f2http://dx.doi.org/10.1088/2053-1583/ac75f2
BELLUS M Z, LI M, LANE S D, et al. Type-Ⅰ van der Waals heterostructure formed by MoS2 and ReS2 monolayers [J]. Nanoscale Horiz., 2017, 2(1): 31-36. doi: 10.1039/c6nh00144khttp://dx.doi.org/10.1039/c6nh00144k
LI M, BELLUS M Z, DAI J, et al. A type-Ⅰ van der Waals heterobilayer of WSe2/MoTe2 [J]. Nanotechnology, 2018, 29(33): 335203-1-8. doi: 10.1088/1361-6528/aac73ahttp://dx.doi.org/10.1088/1361-6528/aac73a
HAO S C, HE D W, MIAO Q, et al. Upconversion photoluminescence by charge transfer in a van der Waals trilayer [J]. Appl. Phys. Lett., 2019, 115(17): 173102-1-5. doi: 10.1063/1.5125169http://dx.doi.org/10.1063/1.5125169
BIAN A, HE D W, HAO S C, et al. Dynamics of charge-transfer excitons in a transition metal dichalcogenide heterostructure [J]. Nanoscale, 2020, 12(15): 8485-8492. doi: 10.1039/d0nr01924khttp://dx.doi.org/10.1039/d0nr01924k
ALEXEEV E M, RUIZ-TIJERINA D A, DANOVICH M, et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures [J]. Nature, 2019, 567(7746): 81-86. doi: 10.1038/s41586-019-0986-9http://dx.doi.org/10.1038/s41586-019-0986-9
JIN C H, REGAN E C, YAN A M, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices [J]. Nature, 2019, 567(7746): 76-80. doi: 10.1038/s41586-019-0976-yhttp://dx.doi.org/10.1038/s41586-019-0976-y
HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit [J]. Nature, 2017, 546(7657): 270-273. doi: 10.1038/nature22391http://dx.doi.org/10.1038/nature22391
DEB S, CAO W, RAAB N, et al. Cumulative polarization in conductive interfacial ferroelectrics [J]. Nature, 2022, 612(7940): 465-469. doi: 10.1038/s41586-022-05341-5http://dx.doi.org/10.1038/s41586-022-05341-5
ROGÉE L, WANG L J, ZHANG Y, et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science, 2022, 376(6596): 973-978. doi: 10.1126/science.abm5734http://dx.doi.org/10.1126/science.abm5734
KANG S, KIM K, KIM B H, et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3 [J]. Nature, 2020, 583(7818): 785-789. doi: 10.1038/s41586-020-2520-5http://dx.doi.org/10.1038/s41586-020-2520-5
SUN X Q, ZHU Y, QIN H, et al. Enhanced interactions of interlayer excitons in free-standing heterobilayers [J]. Nature, 2022, 610(7932): 478-484. doi: 10.1038/s41586-022-05193-zhttp://dx.doi.org/10.1038/s41586-022-05193-z
LIU W J, JI Z R, WANG Y H, et al. Generation of helical topological exciton-polaritons [J]. Science, 2020, 370(6516): 600-604. doi: 10.1126/science.abc4975http://dx.doi.org/10.1126/science.abc4975
0
Views
586
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution