浏览全部资源
扫码关注微信
江西理工大学 能源与机械工程学院, 江西 南昌 330013
Published:05 November 2023,
Received:05 May 2023,
Revised:24 May 2023,
移动端阅览
马道远,刘云正,夏李斌.白光LED用Mn4+激活氟氧化物红色荧光粉研究进展[J].发光学报,2023,44(11):1904-1922.
MA Daoyuan,LIU Yunzheng,XIA Libin.Advance in Mn4+-doped Oxyfluoride Red-emitting Phosphors for WLED[J].Chinese Journal of Luminescence,2023,44(11):1904-1922.
马道远,刘云正,夏李斌.白光LED用Mn4+激活氟氧化物红色荧光粉研究进展[J].发光学报,2023,44(11):1904-1922. DOI: 10.37188/CJL.20230098.
MA Daoyuan,LIU Yunzheng,XIA Libin.Advance in Mn4+-doped Oxyfluoride Red-emitting Phosphors for WLED[J].Chinese Journal of Luminescence,2023,44(11):1904-1922. DOI: 10.37188/CJL.20230098.
近年来,白光LED因其节能、环保、长寿命等优点已成为市场主流照明。高性能红色荧光粉是改善白光LED显色性的重要材料。Mn
4+
激活氟氧化物红色荧光粉兼具了氟化物的良好发光性能和氧化物的高稳定性,当前已成为了一个研究热点。本文综述了多种以Mn
4+
为激活剂的氟氧化物红色荧光粉,从晶体场理论以及热猝灭机理的角度出发,分类详述了各荧光粉晶体结构对发光性能的影响关系,以期为改善Mn
4+
激活氟氧化物荧光粉发光性能提供理论指导。最后总结了Mn
4+
激活氟氧化物红色荧光粉的优缺点和研究中存在的问题,并对未来的发展趋势进行了展望。
In recent years, white LED has become the mainstream lighting in the market due to its advantages of energy conservation, environmental protection, and long life-time. High performance red phosphor is an important material for improving the color rendering performance of white LED. Mn
4+
-activated oxyfluoride red phosphors have become a research hot spot due to their excellent luminescent properties and high stability of oxides. In this paper, a variety of red oxyfluoride phosphors using Mn
4+
as an activator are reviewed. From the perspective of crystal field theory and thermal quenching mechanism, the relationship between the crystal structure of each phosphor and its luminescent properties is classified and detailed, in order to provide theoretical guidance for improving the luminescent properties of Mn
4+
-activated oxyfluoride phosphors. Finally, the advantages and disadvantages of Mn
4+
activated oxyfluoride red phosphors and the existing problems in the research are summarized, and the future development trend is prospected.
发光材料Mn4+氟氧化物红色荧光粉白光LED
luminescent materialMn4+oxyfluoridered-emitting phosphorwhite LED
姬海鹏, 张宗涛, XU Jian, 等. Mn4+激活氧氟化物红光荧光粉的研究进展 [J]. 无机材料学报, 2020, 35(8): 847-856. doi: 10.15541/jim20190554http://dx.doi.org/10.15541/jim20190554
JI H P, ZHANG Z T, XU J, et al. Advance in Red-emitting Mn4+-activated oxyfluoride phosphors [J]. J. Inorgan. Mater., 2020, 35(8): 847-856. (in Chinese). doi: 10.15541/jim20190554http://dx.doi.org/10.15541/jim20190554
章伟, 何梦婷, 乔旭升, 等. Mn4+激活的典型LED红色荧光粉研究进展 [J]. 发光学报, 2021, 42(9): 1345-1364. doi: 10.37188/CJL.20210148http://dx.doi.org/10.37188/CJL.20210148
ZHANG W, HE M T, QIAO X S, et al. Research progress of Mn4+ activated typical LED red phosphors [J]. Chin. J. Lumin., 2021, 42(9): 1345-1364. doi: 10.37188/CJL.20210148http://dx.doi.org/10.37188/CJL.20210148
ADACHI S. Review—Mn4+-activated red and deep red-emitting phosphors [J]. ECS J. Solid State Sci. Technol., 2019, 9(1): 016001-1-34. doi: 10.1149/2.0022001jsshttp://dx.doi.org/10.1149/2.0022001jss
洪广言. 稀土发光材料的研究进展 [J]. 人工晶体学报, 2015, 44(10): 2641-2651. doi: 10.3969/j.issn.1000-985X.2015.10.004http://dx.doi.org/10.3969/j.issn.1000-985X.2015.10.004
HONG G Y. Research progress of rare earth luminescent materials [J]. J. Synthet. Cryst., 2015, 44(10): 2641-2651. (in Chinese). doi: 10.3969/j.issn.1000-985X.2015.10.004http://dx.doi.org/10.3969/j.issn.1000-985X.2015.10.004
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives [J]. Chem. Rev., 2018, 118(4): 1951-2009. doi: 10.1021/acs.chemrev.7b00284http://dx.doi.org/10.1021/acs.chemrev.7b00284
ADACHI S, TAKAHASHI T. Direct synthesis and properties of K2SiF6∶Mn4+ phosphor by wet chemical etching of Si wafer [J]. J. Appl. Phys., 2008, 104(2): 023512-1-3. doi: 10.1063/1.2956330http://dx.doi.org/10.1063/1.2956330
QIANG J W, DENG D S, YU Y, et al. Reductant-optimized exchange strategy to construct the water-resistant shell of Mn4+-doped phosphors [J]. Appl. Surf. Sci., 2022, 604: 154461-1-11. doi: 10.1016/j.apsusc.2022.154461http://dx.doi.org/10.1016/j.apsusc.2022.154461
QIANG J W, WANG L, WANG T M, et al. Improvement of the luminescent thermal stability and water resistance of K2SiF6∶Mn4+ by surface passivation [J]. Ceram. Int., 2022, 48(12): 17253-17260. doi: 10.1016/j.ceramint.2022.02.285http://dx.doi.org/10.1016/j.ceramint.2022.02.285
姬海鹏. Mn4+离子光谱学基础 [J]. 发光学报, 2022, 43(8): 1175-1187. doi: 10.37188/cjl.20220102http://dx.doi.org/10.37188/cjl.20220102
JI H P. Basic knowledge for understanding spectroscopic property of Mn4+ ion [J]. Chin. J. Lumin., 2022, 43(8): 1175-1187. (in Chinese). doi: 10.37188/cjl.20220102http://dx.doi.org/10.37188/cjl.20220102
CHEN Z L, TIAN Z B, ZHANG J, et al. Novel deep‐red‐emitting double‐perovskite type Ca2ScNbO6∶Mn4+ phosphor: Structure, spectral study, and improvement by NaF flux [J]. J. Am. Ceram. Soc., 2022, 105(6): 4230-4241. doi: 10.1111/jace.18424http://dx.doi.org/10.1111/jace.18424
HUANG X Y, SUN Q, DEVAKUMAR B. Novel efficient deep-red-emitting Ca2LuTaO6∶Mn4+ double-perovskite phosphors for plant growth LEDs [J]. J. Lumin., 2020, 222, 117177-1-8. doi: 10.1016/j.jlumin.2020.117177http://dx.doi.org/10.1016/j.jlumin.2020.117177
LV T, HUANG J Q, YANG C L, et al. Fundamental luminescence properties of Mn4+ activated Ca14Al10Zn6O35 phosphor [J]. J. Mater. Chem. C, 2022, 10(26): 9773-9785. doi: 10.1039/d2tc01906jhttp://dx.doi.org/10.1039/d2tc01906j
HU T, LIN H, CHENG Y, et al. A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn4+-activated oxyfluoride Na2WO2F4 [J]. J. Mater. Chem. C, 2017, 5(40): 10524-10532. doi: 10.1039/c7tc03655hhttp://dx.doi.org/10.1039/c7tc03655h
ZHOU Y, ZHANG S, WANG X M, et al. Structure and luminescence properties of Mn4+-activated K3TaO2F4 red phosphor for white LEDs [J]. Inorg. Chem., 2019, 58(7): 4412-4419. doi: 10.1021/acs.inorgchem.8b03577http://dx.doi.org/10.1021/acs.inorgchem.8b03577
ZHANG K, WANG B, LIU T P, et al. Mechanochemical fabrication of a Mn4+-activated inorganic Rb2KTiOF5 perovskite red phosphor for white light-emitting diodes [J]. ACS Appl. Opt. Mater., 2023, 1(1): 48-54.
LIANG Z B, YANG Z F, TANG H J, et al. Synthesis, luminescence properties of a novel oxyfluoride red phosphor BaTiOF4∶Mn4+ for LED backlighting [J]. Opt. Mate., 2019, 90: 89-94. doi: 10.1016/j.optmat.2019.01.075http://dx.doi.org/10.1016/j.optmat.2019.01.075
WANG Q, LIAO J S, KONG L Y, et al. Luminescence properties of a non-rare-earth doped oxyfluoride LiAl4O6F∶Mn4+ red phosphor for solid-state lighting [J]. J. Alloys Compd., 2019, 772: 499-506. doi: 10.1016/j.jallcom.2018.09.199http://dx.doi.org/10.1016/j.jallcom.2018.09.199
KATO H, TAKEDA Y, KOBAYASHI M, et al. Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn4+ [J]. Front. Chem., 2018, 6: 467-1-7. doi: 10.3389/fchem.2018.00467http://dx.doi.org/10.3389/fchem.2018.00467
BRIK M G, SRIVASTAVA A M. A computation study of site occupancy in the commercial Mg28Ge7.55O32F15.04∶Mn4+ phosphor [J]. Opt. Mater., 2016, 54: 245-251. doi: 10.1016/j.optmat.2016.02.044http://dx.doi.org/10.1016/j.optmat.2016.02.044
PARK H W, JO H, ANOOP G, et al. Transition metal ion co-doped MgO-MgF2-GeO2∶Mn4+ red phosphors for white LEDs with wider color reproduction gamut [J]. J. Alloys Compd., 2020, 818: 152914-1-8. doi: 10.1016/j.jallcom.2019.152914http://dx.doi.org/10.1016/j.jallcom.2019.152914
YANG Z B, WANG Z J, ZHENG M J, et al. Excitation selective thermal characteristics of Mg28Ge7.55-xGaxO32F15.04: Mn4+ and application in single/dual-mode optical thermometry [J]. Mater. Today Commun., 2021, 28: 102660-1-10. doi: 10.1016/j.mtcomm.2021.102660http://dx.doi.org/10.1016/j.mtcomm.2021.102660
STOLL C, SEIBALD M, BAUMANN D, et al. HF-free solid-state synthesis of the oxyfluoride phosphor K3MoOF7∶Mn4+ [J]. Eur. J. Inorgan. Chem., 2019, 2019(29): 3383-3388. doi: 10.1002/ejic.201900634http://dx.doi.org/10.1002/ejic.201900634
PANG G, HONG F, LIU X Y, et al. Moisture-resistant Nb-based fluoride K2NbF7∶Mn4+ and oxyfluoride phosphor K3-(NbOF5)(HF2)∶Mn4+: synthesis, improved luminescence performance and application in warm white LEDs [J]. Dalton Trans., 2021, 50(46): 17290-17300. doi: 10.1039/d1dt03341ghttp://dx.doi.org/10.1039/d1dt03341g
LIU X Y, HONG F, PANG G, et al. A novel K3WO2F5·2H2O∶Mn4+ phosphor with excellent hydrophobic stability by coating paraffin wax for the application of WLEDs [J]. J. Alloys Compd., 2022, 918: 165522-1-12. doi: 10.1016/j.jallcom.2022.165522http://dx.doi.org/10.1016/j.jallcom.2022.165522
STOLL C, HEYMANN G, SEIBALD M, et al. K3WOF7∶Mn4+:A red oxyfluoride phosphor [J]. J. Fluor. Chem., 2019, 226: 109356-1-7. doi: 10.1016/j.jfluchem.2019.109356http://dx.doi.org/10.1016/j.jfluchem.2019.109356
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M, et al. Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect [J]. ECS J. Solid State Sci. Technol., 2016, 5(1): R3067-1-11. doi: 10.1149/2.0091601jsshttp://dx.doi.org/10.1149/2.0091601jss
郑鹏, 丁国真, 解荣军. Ce3+和Eu2+掺杂荧光材料的光猝灭机理研究进展 [J]. 发光学报, 2021, 42(10): 1447-1457. doi: 10.37188/cjl.20210173http://dx.doi.org/10.37188/cjl.20210173
ZHENG P, DING G Z, XIE R J. Research progress on optical quenching of Ce3+-and Eu2+-doped luminescent materials [J]. Chin. J. Lumin., 2021, 42(10): 1447-1457. (in Chinese). doi: 10.37188/cjl.20210173http://dx.doi.org/10.37188/cjl.20210173
张铮铮. 两种典型磷酸盐红色荧光粉的荧光热稳定机理研究 [D]. 郑州: 河南大学, 2020. doi: 10.1016/j.jlumin.2019.116885http://dx.doi.org/10.1016/j.jlumin.2019.116885
ZHANG Z Z. Study on the Luminescence Thermal Stability Mechanism of Two Typical Phosphate Red Phosphors [M]. Zhengzhou: Henan University, 2020. (in Chinese). doi: 10.1016/j.jlumin.2019.116885http://dx.doi.org/10.1016/j.jlumin.2019.116885
BEERS W W, SMITH D, COHEN W E, et al. Temperature dependence (13-600 K) of Mn4+ lifetime in commercial Mg28Ge7.55O32F15.04 and K2SiF6 phosphors [J]. Opt. Mater., 2018, 84: 614-617. doi: 10.1016/j.optmat.2018.07.050http://dx.doi.org/10.1016/j.optmat.2018.07.050
JANSEN T, JÜSTEL T, KIRM M, et al. Thermal quenching of Mn4+ luminescence in Sn4+-containing garnet hosts [J]. Opt. Mater., 2018, 84: 600-605. doi: 10.1016/j.optmat.2018.07.061http://dx.doi.org/10.1016/j.optmat.2018.07.061
SENDEN T, VAN DIJK-MOES R J A, MEIJERINK A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors [J]. Light Sci. Appl., 2018, 7(1): 8-1-13. doi: 10.1038/s41377-018-0013-1http://dx.doi.org/10.1038/s41377-018-0013-1
JI H P, HOU X H, MOLOKEEV M S, et al. Ultrabroadband red luminescence of Mn4+ in MgAl2O4 peaking at 651 nm [J]. Dalton Trans., 2020, 49(17): 5711-5721. doi: 10.1039/d0dt00931hhttp://dx.doi.org/10.1039/d0dt00931h
FANG S Q, LANG T C, HAN T, et al. Zero-thermal-quenching of Mn4+ far-red-emitting in LaAlO3 perovskite phosphor via energy compensation of electrons’ traps [J]. Chem. Eng. J., 2020, 389: 124297-1-12. doi: 10.1016/j.cej.2020.124297http://dx.doi.org/10.1016/j.cej.2020.124297
TANG S, LIU Y, LI H, et al. Luminescent properties of a red-emitting oxyfluoride phosphor Rb2WO2F4∶Mn4+ [J]. J. Lumin., 2020, 224: 117291-1-5. doi: 10.1016/j.jlumin.2020.117291http://dx.doi.org/10.1016/j.jlumin.2020.117291
ZHOU Y Y, MING H, ZHANG S, et al. Unveiling Mn4+ substitution in oxyfluoride phosphor Rb2MoO2F4∶Mn4+ applied to wide-gamut fast-response backlight displays [J]. Chem. Eng. J., 2021, 415: 128974-1-7. doi: 10.1016/j.cej.2021.128974http://dx.doi.org/10.1016/j.cej.2021.128974
DENG T T, SONG E H, ZHOU Y Y, et al. Tailoring photoluminescence stability in double perovskite red phosphors A2BAlF6∶Mn4+(A = Rb, Cs; B = K, Rb) via neighboring-cation modulation [J]. J. Mater. Chem. C, 2017, 5(47): 12422-12429. doi: 10.1039/c7tc04411ahttp://dx.doi.org/10.1039/c7tc04411a
WANG Q, YANG Z Y, WANG H Y, et al. Novel Mn4+-activated oxyfluoride Cs2NbOF5∶Mn4+ red phosphor for warm white light-emitting diodes [J]. Opt. Mater., 2018, 85: 96-99. doi: 10.1016/j.optmat.2018.08.050http://dx.doi.org/10.1016/j.optmat.2018.08.050
ZHOU J B, CHEN Y Y, JIANG C Y, et al. High moisture resistance of an efficient Mn4+-activated red phosphor Cs2NbOF5∶Mn4+ for WLEDs [J]. Chem. Eng. J., 2021, 405: 126678-1-8. doi: 10.1016/j.cej.2020.126678http://dx.doi.org/10.1016/j.cej.2020.126678
DONG X L, PAN Y X, LI D, et al. A novel red phosphor of Mn4+ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications [J]. CrystEngComm, 2018, 20(37): 5641-5646. doi: 10.1039/c8ce01304ghttp://dx.doi.org/10.1039/c8ce01304g
ZHOU Y Y, YU C K, SONG E H, et al. Three birds with one stone: K2SiF6∶Mn4+ single crystal phosphors for high-power and laser-driven lighting [J]. Adv. Opt. Mater., 2020, 8(23): 2000976-1-9. doi: 10.1002/adom.202000976http://dx.doi.org/10.1002/adom.202000976
LUO L, LIU R H, LIU Y H, et al. Effects of oxygen vacancies on luminescent properties of phosphor Sr4Al14O25∶Mn4+ co-doping with alkali metal ion [J]. Inorg. Chem. Commun., 2020, 118: 107972-1-5. doi: 10.1016/j.inoche.2020.107972http://dx.doi.org/10.1016/j.inoche.2020.107972
XIONG F B, LIN L X, LIN H F, et al. Synthesis and photoluminescence of Mn4+ in M4Al14O25 (M=Sr or Mg) compounds as red-light phosphors for white LED [J]. Opt. Laser Technol., 2019, 117: 299-303. doi: 10.1016/j.optlastec.2019.04.023http://dx.doi.org/10.1016/j.optlastec.2019.04.023
MENG L L, LIANG L F, WEN Y X. A novel red phosphor Na+, Mn4+ co-doped Sr4Al14O25 for warm white light emitting diodes [J]. Mater. Chem. Phys., 2015, 153: 1-4. doi: 10.1016/j.matchemphys.2014.12.041http://dx.doi.org/10.1016/j.matchemphys.2014.12.041
XING G C, FENG Y X, PAN M, et al. Photoluminescence tuning in a novel Bi3+/Mn4+ co-doped La2ATiO6(A = Mg, Zn) double perovskite structure: phase transition and energy transfer [J]. J. Mater. Chem. C, 2018, 6(48): 13136-13147. doi: 10.1039/c8tc05171bhttp://dx.doi.org/10.1039/c8tc05171b
WANG X S, WANG Z X, SONG B Q, et al. Performance improvement of Sr4Al14O25∶Mn4+ red emission phosphor via Na+ doping [J]. J. Alloys Compd., 2023, 937: 168346-1-10. doi: 10.1016/j.jallcom.2022.168346http://dx.doi.org/10.1016/j.jallcom.2022.168346
WANG X S, JIANG Q, WANG Z X, et al. High performance Sr4Al14O25∶Mn4+ phosphor: structure calculation and optical properties [J]. J. Mater. Chem. C, 2022, 10(20): 7909-7916. doi: 10.1039/d2tc00795ahttp://dx.doi.org/10.1039/d2tc00795a
HOU J S, YIN W X, DONG L P, et al. A novel red-emitting Na2NbOF5∶Mn4+ phosphor with ultrahigh color purity for warm white lighting and wide-gamut backlight displays [J]. Materials (Basel), 2021, 14(18): 5317-1-11. doi: 10.3390/ma14185317http://dx.doi.org/10.3390/ma14185317
WANG Z L, YANG Z Y, YANG Z F, et al. Red phosphor Rb2NbOF5∶Mn4+ for warm white light-emitting diodes with a high color-rendering index [J]. Inorg. Chem., 2019, 58(1): 456-461. doi: 10.1021/acs.inorgchem.8b02676http://dx.doi.org/10.1021/acs.inorgchem.8b02676
HE S G, YAO L Q, CAI W T, et al. A novel Mn4+ doped oxyfluoride red phosphor for rapid-response backlights display [J]. Dalton Trans., 2020, 49(32): 11290-11299. doi: 10.1039/d0dt02093ahttp://dx.doi.org/10.1039/d0dt02093a
CAI P Q, QIN L, CHEN C L, et al. Luminescence, energy transfer and optical thermometry of a novel narrow red emitting phosphor: Cs2WO2F4∶Mn4+ [J]. Dalton Trans, 2017, 46(41): 14331-14340. doi: 10.1039/c7dt02751fhttp://dx.doi.org/10.1039/c7dt02751f
CAI P Q, WANG X F, SEO H J. Excitation power dependent optical temperature behaviors in Mn4+ doped oxyfluoride Na2WO2F4 [J]. Phys. Chem. Chem. Phys., 2018, 20(3): 2028-2035. doi: 10.1039/c7cp07123jhttp://dx.doi.org/10.1039/c7cp07123j
JI H P, WANG Y C, LI J S. Cation-exchange reaction to prepare Na2WO2F4∶Mn4+ with intense zero phonon line at 619 nm avoiding disproportionation reaction [J]. Ceram. Int., 2023, 49(6): 10056-10063. doi: 10.1016/j.ceramint.2022.11.186http://dx.doi.org/10.1016/j.ceramint.2022.11.186
JANSEN T, FUNKE L M, GOROBEZ J, et al. Red-emitting K3HF2WO2F4∶Mn4+ for application in warm-white phosphor-converted LEDs - optical properties and magnetic resonance characterization [J]. Dalton Trans., 2019, 48(16): 5361-5371. doi: 10.1039/c9dt00091ghttp://dx.doi.org/10.1039/c9dt00091g
YAO L Q, HE S G, NIE W D, et al. Enhanced red emission from Mn4+ activated phosphor induced by fluoride to oxyfluoride phase transformation [J]. J. Lumin., 2021, 238: 118315-1-9. doi: 10.1016/j.jlumin.2021.118315http://dx.doi.org/10.1016/j.jlumin.2021.118315
LIU Y, LI H, TANG S, et al. A red-emitting phosphor K2[MoO2F4]·H2O∶Mn4+ for warm white light-emitting diodes with a high color rendering index [J]. Mater. Res. Bull., 2020, 122: 110675-1-5. doi: 10.1016/j.materresbull.2019.110675http://dx.doi.org/10.1016/j.materresbull.2019.110675
WU J, WANG B, LIU Z Y, et al. A novel Mn4+-activated layered oxide-fluoride perovskite-type KNaMoO2F4 red phosphor for wide gamut warm white light-emitting diode backlights [J]. Dalton Trans., 2021, 50(32): 11189-11196. doi: 10.1039/d1dt01863ahttp://dx.doi.org/10.1039/d1dt01863a
HE S A, XU F F, HAN T T, et al. A Mn4+-doped oxyfluoride phosphor with remarkable negative thermal quenching and high color stability for warm WLEDs [J]. Chem. Eng. J., 2020, 392: 123657-1-10. doi: 10.1016/j.cej.2019.123657http://dx.doi.org/10.1016/j.cej.2019.123657
YANG Z Y, YANG Z F, WEI Q W, et al. Luminescence of red-emitting phosphor Rb5Nb3OF18∶Mn4+ for warm white light-emitting. diodes [J]. J. Lumin., 2019, 210: 408-412. doi: 10.1016/j.jlumin.2019.03.003http://dx.doi.org/10.1016/j.jlumin.2019.03.003
YANG X Y, LIAO C J, JIN Z D, et al. Luminescent properties of Mn4+ in an oxyfluoride complex with ultra-high thermal stability [J]. Mater. Res. Bull., 2022, 150: 111798-1-7. doi: 10.1016/j.materresbull.2022.111798http://dx.doi.org/10.1016/j.materresbull.2022.111798
WU J, WANG B, LIU Z Y, et al. Mn4+-activated oxyfluoride K3TaOF6 red phosphor with intense zero phonon line for warm white light-emitting diodes [J]. RSC Adv, 2021, 11(42): 26120-26126. doi: 10.1039/d1ra05174ahttp://dx.doi.org/10.1039/d1ra05174a
BODE H, JENSSEN H, BANDTE F. Über eine neue Darstellung des Kalium-hexafluoromanganats(IV) [J]. Angew. Chem., 1953, 65(11): 304. doi: 10.1002/ange.19530651108http://dx.doi.org/10.1002/ange.19530651108
LIN H, HU T, HUANG Q M, et al. Non-rare-earth K2XF7∶Mn4+(X = Ta, Nb): A highly-efficient narrow-band red phosphor enabling the application in wide-color-gamut LCD [J]. Laser Photon. Rev., 2017, 11(6): 1700148-1-10. doi: 10.1002/lpor.201700148http://dx.doi.org/10.1002/lpor.201700148
WANG Z W, WANG X Y, JI H P, et al. BaTiF6∶Mn4+ red phosphor: synthesis of single crystals at room temperature and the high hydrolysis-resistant property [J]. Inorg. Chem., 2021, 60(17): 13212-13221. doi: 10.1021/acs.inorgchem.1c01601http://dx.doi.org/10.1021/acs.inorgchem.1c01601
YANG L, WANG S, WANG Y G, et al. Narrow-band red-emitting phosphor K2SiF6∶Mn4+:HF-free synthesis, surface modification, and application for warm white LEDs [J]. ChemistrySelect, 2019, 4(13): 3891-3897. doi: 10.1002/slct.201900988http://dx.doi.org/10.1002/slct.201900988
SHARMA G, PODDAR P. Organic⁃inorganic hybrids for white⁃light phosphors [M]. UPADHYAY K, THOMAS S, TAMRAKAR R K. Hybrid Phosphor Materials. Cham: Springer, 2022: 105-118. doi: 10.1007/978-3-030-90506-4_4http://dx.doi.org/10.1007/978-3-030-90506-4_4
YU Y, WANG L, DENG D S, et al. An organic⁃inorganic hybrid K2TiF6∶Mn4+ red-emitting phosphor with remarkable improvement of emission and luminescent thermal stability [J]. RSC Adv., 2022, 12(7): 3788-3795. doi: 10.1039/d1ra08734ghttp://dx.doi.org/10.1039/d1ra08734g
屈巧, 张文睿, 贺璐璐, 等. Mn4+激活氟氧化物强零声子线发射红光荧光粉 [J]. 发光学报, 2023, 44(5): 786-800. doi: 10.37188/cjl.20220405http://dx.doi.org/10.37188/cjl.20220405
QU Q, ZHANG W R, HE L L, et al. Mn4+-doped red-emitting oxyfluoride phosphors with intense zero phonon line [J]. Chin. J. Lumin., 2023, 44(5): 786-800. (in Chinese). doi: 10.37188/cjl.20220405http://dx.doi.org/10.37188/cjl.20220405
0
Views
250
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution