浏览全部资源
扫码关注微信
南京邮电大学 电子与光学工程学院, 柔性电子(未来技术)学院, 江苏 南京 210023
Published:05 September 2023,
Received:13 April 2023,
Revised:06 May 2023,
移动端阅览
张琦,迟宏毅,吴海洋等.YAG∶Ce玻璃陶瓷选择性激光烧结制备及其发光性能[J].发光学报,2023,44(09):1581-1587.
ZHANG Qi,CHI Hongyi,WU Haiyang,et al.Luminescence Properties of Selective Laser Sintered YAG∶Ce Glass Ceramic Phosphors[J].Chinese Journal of Luminescence,2023,44(09):1581-1587.
张琦,迟宏毅,吴海洋等.YAG∶Ce玻璃陶瓷选择性激光烧结制备及其发光性能[J].发光学报,2023,44(09):1581-1587. DOI: 10.37188/CJL.20230095.
ZHANG Qi,CHI Hongyi,WU Haiyang,et al.Luminescence Properties of Selective Laser Sintered YAG∶Ce Glass Ceramic Phosphors[J].Chinese Journal of Luminescence,2023,44(09):1581-1587. DOI: 10.37188/CJL.20230095.
荧光玻璃陶瓷结合了荧光粉优异的发光性能和玻璃基质良好的热导率及热稳定性的特点,已在高功率白光LED乃至激光照明领域引起了广泛的关注。本文采用一种选择性激光(CO
2
激光器)烧结技术,制备了YAG∶Ce荧光玻璃陶瓷,并研究了其荧光发光性能以及构筑的白光LED的器件性能。与传统的重熔融或固相烧结方法不同,选择性激光烧结技术仅对局部加热且升/降温速率大,因此该方法具有节能和快速的特点。研究表明,选用适当的激光功率(24 W)、扫描速度(135 mm/s)和扫描间隔(9 μm)等参数,可制备出形貌较好的YAG∶Ce荧光玻璃陶瓷;经过630 ℃热处理1 h消除应力后,其呈现出Ce
3+
离子典型的4f→5d能级跃迁对应的宽带激发光谱(峰值为340 nm和455 nm)以及5d→4f能级跃迁对应的宽带发射光谱(峰值为570 nm),量子效率达82%;与450 nm蓝光LED芯片(3.11 V,0.30 A)组合后,可实现92 lm的白光输出,流明效率为98 lm/W,显色指数为69,色温为5 001 K,色坐标为(0.34,0.35)。以上结果表明,该方法在制备荧光玻璃陶瓷中具有重要的应用潜力。
Efficient and thermally robust glass ceramic phosphors combined both the merits of phosphors and matrix have received growing interests in the white-LED and laser driven lighting. Here, the YAG∶Ce glass ceramics were prepared by an energy saving and fast selective laser sintering with suitable parameters (laser power: 24 W, scanning speed: 135 mm/s, scanning intervals: 9 μm). The results show that selective laser sintered YAG∶Ce glass ceramic after heat treatment (630 ℃, 1 h) exhibits the typical Ce
3+
4f→5d broadband excitations centered at 340 nm and 455 nm and 5d→4f emission centered at 570 nm and its photoluminescence quantum yield is up to 82%. Moreover, combining with a 450 nm LED chip (3.11 V, 0.30 A) directly, the obtained performances including the luminous flux (92 lm), luminous efficiency (98 lm/W), color rendering index (69), correlated color temperature (5 001 K), and chromaticity coordinates (0.34, 0.35) are close to other YAG∶Ce glass ceramic reported. All of those validate the suitability of selective laser sintering for preparation of glass ceramics.
荧光玻璃陶瓷Ce3+掺杂选择性激光烧结白光发光二极管
glass ceramic phosphorCe3+ dopedselective laser sinteringwhite light-emitting diodes
ZHANG D, ZHANG X T, ZHENG B F, et al. Li+ ion induced full visible emission in single Eu2+-doped white emitting phosphor: Eu2+ site preference analysis, luminescence properties, and WLED applications [J]. Adv. Opt. Mater., 2021, 9(19): 2100337-1-13. doi: 10.1002/adom.202100337http://dx.doi.org/10.1002/adom.202100337
YANG Z Y, LIU G C, ZHAO Y F, et al. Competitive site occupation toward improved quantum efficiency of SrLaScO4∶ Eu red phosphors for warm white LEDs [J]. Adv. Opt. Mater., 2022, 10(6): 2102373-1-9. doi: 10.1002/adom.202102373http://dx.doi.org/10.1002/adom.202102373
HUANG S, SHANG M M, YAN Y, et al. Ultra-broadband green-emitting phosphors without cyan gap based on double-heterovalent substitution strategy for full-spectrum WLED lighting [J]. Laser Photonics Rev., 2022, 16(12): 2200473. doi: 10.1002/lpor.202200473http://dx.doi.org/10.1002/lpor.202200473
GU C, WANG X J, XIA C, et al. A new CaF2-YAG∶Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs [J]. J. Mater. Chem. C, 2019, 7(28): 8569-8574. doi: 10.1039/c9tc02407ghttp://dx.doi.org/10.1039/c9tc02407g
BAO S Y, LIANG Y Y, WANG L S, et al. Superhigh-luminance Ce∶YAG phosphor in glass and phosphor-in-glass film for laser lighting [J]. ACS Sustainable Chem. Eng., 2022, 10(24): 8105-8114. doi: 10.1021/acssuschemeng.2c02657http://dx.doi.org/10.1021/acssuschemeng.2c02657
ZHAO H Y, LI Z, ZHANG M W, et al. High-performance Al2O3-YAG∶Ce composite ceramic phosphors for miniaturization of high-brightness white light-emitting diodes [J]. Ceram. Int., 2020, 46(1): 653-662. doi: 10.1016/j.ceramint.2019.09.017http://dx.doi.org/10.1016/j.ceramint.2019.09.017
WANG L H, LIU J W, XU L, et al. Realizing high-power laser lighting: artfully importing micrometer BN into Ce∶ Gd⁃YAG phosphor-in-glass film [J]. Laser Photonics Rev., 2023, 17(2): 2200585. doi: 10.1002/lpor.202200585http://dx.doi.org/10.1002/lpor.202200585
LIN H, HU T, CHENG Y, et al. Glass ceramic phosphors: towards long-lifetime high-power white light-emitting-diode applications-a review [J]. Laser Photonics Rev., 2018, 12(6): 1700344-1-31. doi: 10.1002/lpor.201700344http://dx.doi.org/10.1002/lpor.201700344
WANG L, WEI R, ZHENG P, et al. Realizing high-brightness and ultra-wide-color-gamut laser-driven backlighting by using laminated phosphor-in-glass (PiG) films [J]. J. Mater. Chem. C, 2020, 8(5): 1746-1754. doi: 10.1039/c9tc05807ahttp://dx.doi.org/10.1039/c9tc05807a
ZHANG R, LIN H, YU Y L, et al. A new-generation color converter for high-power white LED: transparent Ce3+∶YAG phosphor-in-glass [J]. Laser Photonics Rev., 2014, 8(1): 158-164. doi: 10.1002/lpor.201300140http://dx.doi.org/10.1002/lpor.201300140
HUANG M H, ZHU Q Q, LI S X, et al. Thermally robust Al2O3-La3Si6N11∶Ce3+ composite phosphor-in-glass (PiG) films for high-power and high-brightness laser-driven lighting [J]. J. Mater. Chem. C, 2023, 11(2): 488-496. doi: 10.1039/d2tc03535ahttp://dx.doi.org/10.1039/d2tc03535a
ZHANG D, XIAO W G, LIU C, et al. Highly efficient phosphor-glass composites by pressureless sintering [J]. Nat. Commun., 2020, 11(1): 2805-1-8. doi: 10.1038/s41467-020-16649-zhttp://dx.doi.org/10.1038/s41467-020-16649-z
SUI P, LIN H, LIN Y, et al. Toward high-power-density laser-driven lighting: enhancing heat dissipation in phosphor-in-glass film by introducing h-BN [J]. Opt. Lett., 2022, 47(14): 3455-3458. doi: 10.1364/ol.460008http://dx.doi.org/10.1364/ol.460008
ZHANG Q, ZHENG R L, WANG D X, et al. A single Mn2+ ions activated fluosilicate glass with continuously tunable broadband emission from 475 nm to 800 nm [J]. J. Lumin., 2020, 227: 117532-1-6. doi: 10.1016/j.jlumin.2020.117532http://dx.doi.org/10.1016/j.jlumin.2020.117532
YAO Q, HU P, SUN P, et al. YAG∶Ce3+ Transparent ceramic phosphors brighten the next-generation laser-driven lighting [J]. Adv. Mater., 2020, 32(19): 1907888-1-7. doi: 10.1002/adma.201907888http://dx.doi.org/10.1002/adma.201907888
WEN B, ZHANG D F, JIANG B, et al. Thermal conductivity of Ce3+ doped (Y, Gd)3Al5O12 ceramic phosphor [J]. J. Lumin., 2020, 221: 116886-1-5. doi: 10.1016/j.jlumin.2019.116886http://dx.doi.org/10.1016/j.jlumin.2019.116886
MA X G, LI X Y, LI J Q, et al. Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics [J]. Nat. Commun., 2018, 9(1): 1175-1-9. doi: 10.1038/s41467-018-03467-7http://dx.doi.org/10.1038/s41467-018-03467-7
ZHU X Y, XU Q, LI H K, et al. Fabrication of High-performance silver mesh for transparent glass heaters via electric-field-driven microscale 3D printing and UV-assisted microtransfer [J]. Adv. Mater., 2019, 31(32): 1902479-1-9. doi: 10.1002/adma.201902479http://dx.doi.org/10.1002/adma.201902479
COOPERSTEIN I, INDUKURI S R K C, BOUKETOV A, et al. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties [J]. Adv. Mater., 2020, 32(28): 2001675-1-8. doi: 10.1002/adma.202001675http://dx.doi.org/10.1002/adma.202001675
CHEN Z, SUN X H, SHANG Y P, et al. Dense ceramics with complex shape fabricated by 3D printing: a review [J]. J. Adv. Ceram., 2021, 10(2): 195-218. doi: 10.1007/s40145-020-0444-zhttp://dx.doi.org/10.1007/s40145-020-0444-z
ZHANG G R, CARLONI D, WU Y Q. 3D printing of transparent YAG ceramics using copolymer-assisted slurry [J]. Ceram. Int., 2020, 46(10): 17130-17134. doi: 10.1016/j.ceramint.2020.03.247http://dx.doi.org/10.1016/j.ceramint.2020.03.247
WANG H M, LIU L Y, YE P C, et al. 3D printing of transparent spinel ceramics with transmittance approaching the theoretical limit [J]. Adv. Mater., 2021, 33(15): 2007072-1-9. doi: 10.1002/adma.202007072http://dx.doi.org/10.1002/adma.202007072
CARLONI D, ZHANG G R, WU Y Q. Transparent alumina ceramics fabricated by 3D printing and vacuum sintering [J]. J. Eur. Ceram. Soc., 2021, 41(1): 781-791. doi: 10.1016/j.jeurceramsoc.2020.07.051http://dx.doi.org/10.1016/j.jeurceramsoc.2020.07.051
黄新友, 王雁斌, 程梓秋, 等. 高亮度固态照明用LuYAG∶Ce荧光陶瓷 [J]. 发光学报, 2023, 44(6): 964-974. doi: 10.37188/cjl.20220435http://dx.doi.org/10.37188/cjl.20220435
HUANG X Y, WANG Y B, CHENG Z Q, et al. LuYAG∶Ce transparent ceramic phosphors for high-brightness solid-state lighting application [J]. Chin. J. Lumin., 2023, 44(6): 964-974. (in Chinese). doi: 10.37188/cjl.20220435http://dx.doi.org/10.37188/cjl.20220435
吕清洋, 薛秉国, 王婷婷, 等. 白光照明用YAG∶Ce荧光薄膜研究进展 [J]. 发光学报, 2020, 41(11): 1323-1334. doi: 10.37188/CJL.20200231http://dx.doi.org/10.37188/CJL.20200231
LYU Q Y, XUE B G, WANG T T, et al. Research progress of YAG∶Ce fluorescent films for white lighting [J]. Chin. J. Lumin., 2020, 41(11): 1323-1334. (in Chinese). doi: 10.37188/CJL.20200231http://dx.doi.org/10.37188/CJL.20200231
YOU S H, LI S X, ZHENG P, et al. A thermally robust La3Si6N11∶Ce-in-glass film for high-brightness blue-laser-driven solid state lighting [J]. Laser Photonics Rev., 2019, 13(2): 1800216-1-10. doi: 10.1002/lpor.201800216http://dx.doi.org/10.1002/lpor.201800216
CHEN X P, HU Z W, CAO M Q, et al. Influence of cerium doping concentration on the optical properties of Ce, Mg∶LuAG scintillation ceramics [J]. J. Eur. Ceram. Soc., 2018, 38(9): 3246-3254. doi: 10.1016/j.jeurceramsoc.2018.03.023http://dx.doi.org/10.1016/j.jeurceramsoc.2018.03.023
ZHUANG Y J, LI C Y, LIU C L, et al. High-efficiency YAG∶Ce3+ glass-ceramic phosphor by an organic-free screen-printing technique for high-power WLEDs [J]. Opt. Mater., 2020, 107: 110118-1-6. doi: 10.1016/j.optmat.2020.110118http://dx.doi.org/10.1016/j.optmat.2020.110118
ZHANG X J, YU J B, WANG J, et al. All-Inorganic light convertor based on phosphor-in-glass engineering for next-generation modular high-brightness white LEDs/LDs [J]. ACS Photonics, 2017, 4(4): 986-995. doi: 10.1021/acsphotonics.7b00049http://dx.doi.org/10.1021/acsphotonics.7b00049
XIA L B, XIAO Q H, YE X Y, et al. Erosion behavior and luminescence properties of Y3Al5O12∶Ce3+-embedded calcium bismuth borate glass-ceramics for WLEDs [J]. J. Am. Ceram. Soc., 2019, 102(4): 2053-2065. doi: 10.1111/jace.16062http://dx.doi.org/10.1111/jace.16062
0
Views
498
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution